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1 Introduction

There has been significant innovation in the financial industry in the past ten
years. More and more basket options and complex exotic contracts depending
on multiple indices are issued. This paper proposes to evaluate multivariate
derivatives. Our approach assumes that each underlying asset evolves as a
GARCH(1,1) process. Unlike most previous studies on this topic, we do not
assume that the dependence observed between historical prices is necessarily
similar to the dependence under the risk-neutral probability. The method is
implemented with market data from the New York Stock Exchange on basket
options written on three international indices.

There exist several approaches to price options written on dependent as-
sets. The first approach is to consider a multivariate Black-Scholes model.
The setting consists of n assets modeled by multivariate geometric Brownian
motions with constant volatility and constant interest rates. Another ap-
proach was proposed by Galichon [2006] who extends the idea of the local
volatility model developed by Dupire [1994] to build a stochastic correlation
model (see also Langnau [2009]). Rosenberg [2003] and Cherubini and Lu-
ciano [2002] propose a non-parametric estimation of the marginal risk-neutral
densities (using option prices written on each asset). Van den Goorbergh et
al. [2005] adopt a parametric approach. They estimate a GARCH(1,1) for
each asset under the physical measure, and then use the transformation by
Duan [1995] to obtain the risk-neutral distribution. Cherubini and Luciano
[2002] and Van den Goorbergh et al. [2005] model the dependence between
the different underlying assets using historical data on the joint distribu-
tion. The same dependence is then assumed under the risk-neutral probabil-
ity. Cherubini and Luciano [2002] study digital binary options and Van den
Goorbergh et al. [2005] apply their techniques on some hypothetical con-
tracts written on the maximum or the minimum of two assets. Both papers
study financial derivatives written on only two indices and have no empirical
examples.

In this paper, we extend the paper of Van den Goorbergh et al. [2005]
in several directions. First, we consider contracts with possibly more than
two underlying indices and evaluate then using a pair-copula construction
(Aas et al. [2009]). Second, we examine a dataset of basket options prices
and investigate whether the multivariate copula of the underlying assets is
the same under the objective measure P and under the risk-neutral measure
Q. As far as we know all the previous studies using copulae make this as-
sumption, except Galichon [2006] and Langnau [2009]. The latter authors
model the dynamics of the assets directly under the risk-neutral probability,
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and their model fits perfectly the market prices by construction. Finally, we
study the sensitivity of basket option prices to the choice of the parameters
for the GARCH(1,1) processes, the copula family and of its parameters to
understand the impact of dependence misspecification.

There are arguments to believe that the copula under the objective mea-
sure P is similar to the copula under the risk-neutral measure Q. For exam-
ple, in the multivariate Black-Scholes model, the change of measure between
P and Q does not influence the dependence. The covariance matrix stays
the same, only the drift terms change. Rosenberg [2003] and Cherubini and
Luciano [2002] argue that the dependence structure under Q will be the same
as under P when the risk-neutral returns are increasing functions of the ob-
jective returns. Galichon [2006] argues in a very different way. To him, “it
is an extreme assumption to make only in the extreme hypothesis where the
market does not provide any supplemental information on the dependence
structure, which is usually not the case (the price of basket options, for
instance, contains information on the market price of the dependence struc-
ture)”. However in his study, he does not explore this direction. Our setting
is different from Rosenberg [2003] and Cherubini and Luciano [2002] in that
we model assets with GARCH(1,1) processes and make use of Duan [1995]’s
transformation. The change of measure of Duan [1995] has a particular effect
on the GARCH(1,1) process. After this change, not only the drift is changed
but also the volatilities. This transformation is not monotonic which sug-
gests that the dependence may be different in the historical world and the
risk-neutral world.

In this paper, we price an option written on more than two assets in a
dynamic-copula setting. Dependence problems with more than two assets
are significantly more difficult. However using pair-copula constructions, the
problem comes back to study the dependence between two variables at a
time. We illustrate the study with a concrete example using data from the
North American financial market. This set of data is used to show how to
implement our techniques and to discuss how the dependence structure un-
der the objective measure and the risk-neutral world may be different. Our
conclusions are preliminary as the dataset is limited. Section 2 presents the
pricing of a bivariate option. Section 3 extends the study to an option writ-
ten on more than two indices. Section 4 illustrates the techniques presented
in the paper using quotes from the financial market for trivariate options.
Finally, Section 5 shows that prices of multivariate options are very sensitive
to the dependence structure and that a pair-copula construction can capture
sensitivities that a standard trivariate Gaussian copula is not able to. We fur-
ther illustrate that modelling dependence appropriately is not only important
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when pricing multivariate derivatives but also when hedging them.

2 Bivariate Option Pricing

In this section, we first recall how to price a European option that depends
on the final value at maturity of two assets using a similar approach as Van
den Goorbergh et al. [2005].

2.1 Distribution of the underlying assets under P

Denote by Si(t) the closing price of index i for the trading day t, and define
the log-return on asset i for the tth trading day as

ri,t+1 = log (Si(t+ 1)/Si(t)) (1)

where i = 1 or i = 2. Let Ft = σ (r1,s, r2,s, s 6 t) denote all returns infor-
mation available at time t. Similar to Van den Goorbergh et al. [2005], we
assume that the marginal distributions of S1(.) and S2(.) respectively follow
GARCH(1,1) processes with Gaussian innovations. The dependence struc-
ture between the standardized innovations up to time t is given by a copula
CP

t (., .) that may depend on time t and is defined under the physical prob-
ability measure P . This model is quite general and allows for time-varying
dependence as well as time-varying volatilities in a non-deterministic way.
Indeed the dependence can change with the volatility in the financial market
(see Van den Goorbergh et al. [2005] for an example).

Under the objective measure P , the log-returns of each asset Si for i = 1
and i = 2 evolve as follows:





ri,t+1 = µi + ηi,t+1,
σ2
i,t+1 = wi + βiσ

2
i,t + αi(ri,t+1 − µi)

2,
ηi,t+1|Ft ∼P N(0, σ2

i,t)
(2)

where wi > 0, αi > 0, βi > 0 and αi + βi < 1, and where ∼P refers to the
distribution under P . µi is the expected daily log-return for Si. The GARCH
parameters for each margin are estimated by maximum likelihood separately,
using the unconditional variance level wi

1−βi−αi
as starting value σ2

i,0. Denote
the standardized innovations by

(Z1,s, Z2,s)s6t :=

(
η1,s
σ1,s

,
η2,s
σ2,s

)
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The standardized innovations (Z1,s)s and (Z2,s)s are respectively i.i.d.
with a standard normal distribution N(0, 1), but in general the process Z1

is not independent of the process Z2. Let F P
1 be the cdf of Z1,s and F P

2

be the cdf of Z2,s under the objective measure P . Note that F P
1 and F P

2

are N(0, 1)-distributed in our specific case. In general, using Sklar [1959]’s
theorem, the joint distribution F P of Z1 and Z2 can be written as a function
of its marginals. Precisely there exists a unique copula CP , such that

F P (z1, z2) = CP (F P
1 (z1), F

P
2 (z2)) (3)

for all zi ∈ R, i = 1, 2. We then assume that the copula CP (., .) is a paramet-
ric copula and θP corresponds to the parameter(s) of this copula. We propose
to look at a wide class of parametric copulae, the Gaussian, T -Student, Clay-
ton, Gumbel, Frank, Joe, BB1, BB6, BB7 and BB8 copulae as well as their
respective rotated versions (by 90◦, 180◦ or 270◦) (see Joe [1997] and Brech-
mann and Schepsmeier [2011]) but it is straightforward to extend our study
to other families of copulae.

2.2 Pricing of a bivariate option

Assume the financial market is arbitrage-free and denote by Q the chosen
risk-neutral probability to perform the pricing of derivatives. Consider an
option whose payoff depends only on the terminal values of two indices S1

and S2. Let us denote by g(S1(T ), S2(T )) its payoff. The price at time t of
this derivative is given by

pt = e−rf (T−t)EQ [g(S1(T ), S2(T ))|Ft] (4)

where EQ denotes the expectation taken under the risk-neutral probability
Q. Here rf denotes the constant daily risk-free rate and T − t corresponds
to the time to maturity calculated in number of trading days. The price (4)
can also be expressed as a double integral

pt = e−rf (T−t)

∫ +∞

0

∫ +∞

0

g(s1, s2)f
Q(s1, s2)ds1ds2

where fQ denotes the joint density of S1(T ) and S2(T ) under the risk-neutral
probability Q. Similar to (3), it is possible to express the joint density using
the marginal densities f1 and f2 of respectively S1(T ) and S2(T ) as follows:

fQ(x1, x2) = cQ12(F
Q
1 (x1), F

Q
2 (x2))f

Q
1 (x1)f

Q
2 (x2).
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Here cQ12 =
∂2CQ(y1,y2)

∂y1∂y2
where CQ(., .) is the copula between S1(T ) and S2(T )

under Q. To value the option and calculate its price (4), one needs the joint
distribution of S1(T ) and S2(T ) under Q, that is their respective marginal
distributions FQ

1 and FQ
2 , as well as the copula CQ.

Following Duan [1995] and Van den Goorbergh et al. [2005], and assuming
that the conditions needed for the change of measure of Duan [1995] are
satisfied, the log-returns under the risk-neutral probability measure Q are
given as follows





ri,t+1 = rf − 1
2
σ2
i,t + η∗i,t+1,

σ2
i,t+1 = wi + βiσ

2
i,t + αi(ri,t+1 − µi)

2,
η∗i,t+1|Ft ∼Q N(0, σ2

i,t)
(5)

where rf is the daily constant risk-free rate. We assume that this change of
measure is valid 1. Note that the daily risk-free rate rf plays a critical role
in the simulation of the process in the risk-neutral world, and therefore in
the pricing of the security. We need to control for the influence of significant
changes in the level of the risk-free rate over the last years (see discussion in
Section 4).

Dependence Modelling
To model the dependence under Q, there are two possible approaches. The

first approach consists of assuming that it is similar to the dependence under
P . As far as we know, this has been a standard assumption in the literature,
see Cherubini and Luciano [2002], Chiou and Tsay [2008], Rosenberg [2003],
and Van den Goorbergh et al. [2005]. Our approach is quite different. We
would like to infer from market prices of bivariate options the joint distribu-
tion of assets under Q, and therefore the copula under Q. We assume that
the copula under Q belongs to the same family as the copula used under P
but we do not impose that they have the same parameters. Our approach is
therefore parametric.

Assume for example that the copula under P is a parametric copula with
one parameter θP . We investigate if the same copula with a possibly differ-
ent parameter θQ could better reflect market movements in options’ prices.
Suppose that we observe pMt the market price of the option at time t. For

1To apply Duan [1995]’s change of measure, we restrict ourselves to Gaussian innova-
tions. In addition we assume that the conditional distribution of each asset to the entire
information Ft at time t is similar to the conditional distribution to the information gen-
erated solely by this asset up to time t. Duan [1995] shows that, under certain conditions,
the change of measure comes down to a change in the drift.
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any parameter θQ we can also calculate a Monte Carlo estimate p̂mc
t (θQ) of

this price using formula (4). We then solve for the parameter θQ(t) of the
copula such that the estimated price p̂mc

t (θQ(t)) is as close as possible to the
market price pMt . We can then compare θP with θQ to see whether they are
significantly different.

Extension to time-varying dependence
In practice the dependence changes over time, in particular with the level

of volatility on the market. When the volatility is high, the dependence
is usually higher. It is possible to extend our approach to the case when
the parameters of the copula are time-varying, precisely are function of the
volatility observed in the market. For example, Van den Goorbergh et al.
[2005] assume that

θP (t) = f (γ0 + γ1 log (max(σ1,t, σ2,t)) (6)

where f is a given function. Then there are two additional parameters γ0
and γ1 to fit and a specific study is needed each time to determine the best
relationship (6) to assume between the volatilities in the market at time t
and the copula parameter. Other time-varying copula models might involve
GARCH components as in Ausin and Lopes [2010] or stochastic volatility
components as in Hafner and Manner [2008] or Almeida and Czado [2012].
While Ausin and Lopes [2010] and Almeida and Czado [2012] use a Bayesian
approach for estimation, the approach taken by Hafner and Manner [2008]
involves efficient importance sampling. For the ease of exposition, we restrict
ourselves to the case when the dependence is not time-varying. Our model
could easily be extended to time-varying copulae by adding more parameters
to the model.

We now extend the idea developed in this section to trivariate options
in Section 3, and illustrate the study in Sections 4 and 5 with examples of
basket options written on three indices.

3 Multivariate option pricing when there are

more than two indices

We first describe pair-copula construction in the case of three indices. It is
then illustrated with an example of a trivariate option.
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3.1 Multivariate Dependence Modeling

There are many different approaches to model multivariate dependence. In
this paper we continue to follow a copula approach. While there are many
bivariate copulae the choice for multivariate copulae tended to be limited, es-
pecially with regard to asymmetric tail dependence among pairs of variables.
Joe [1996] gave a construction method for multivariate copulae in terms of
bivariate copulae. The bivariate building blocks represent bivariate margins
as well as bivariate conditional distributions. Graphical methods to iden-
tify the necessary building blocks were subsequently developed by Bedford
and Cooke [2001, 2002]. Their full potential to model different dependence
structures for different pairs of variables is recognized by Aas et al. [2009]
and applied to financial return data. This construction approach is called
the pair-copula construction method for multivariate copulae. For three di-
mensions the construction method is simple and proceeds as follows. Let
f(x1, x2, x3) denote the joint density, which is decomposed for example by
conditioning as

f(x1, x2, x3) = f(x3|x1, x2)× f2|1(x2|x1)× f1(x1). (7)

Now by Sklar’s theorem we have f(x1, x2) = c12(F1(x1), F2(x2))f1(x1)f2(x2)
and therefore

f2|1(x2|x1) = c12(F1(x1), F2(x2))f2(x2).

Similarly we have f3|1(x3|x1) = c13(F1(x1), F3(x3))f3(x3). Finally, we use
Sklar’s theorem for the conditional bivariate density

f(x2, x3|x1) = c23|1(F2|1(x2|x1), F3|1(x3|x1))f2|1(x2|x1)f3|1(x3|x1)

and therefore

f(x3|x1, x2) = c23|1(F2|1(x2|x1), F3|1(x3|x1))f3|1(x3|x1).

Putting these expressions into (7) it follows that

f(x1, x2, x3) = c12(F1(x1), F2(x2))c13(F1(x1), F3(x3)) (8)

× c23|1(F2|1(x2|x1), F3|1(x3|x1))f1(x1)f2(x2)f3(x3). (9)

Denote by ui = Fi(xi) for i = 1, i = 2 and i = 3. The corresponding copula
density is therefore given by

c123(u1, u2, u3) = c12(u1, u2).c13(u1, u3).c23|1(F2|1(u2|u1), F3|1(u3|u1)) (10)
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The copula with density given by (10) is called a D-vine in three di-
mensions and involves only bivariate copulae. More general pair-copula con-
structions are contained in Aas et al. [2009] and a recent survey on such
constructions is given by Czado [2010]. Further extensions and applications
are also provided in Kurowicka and Joe [2011].

We now show how to apply this technique to the valuation of options
linked to three market indices.

3.2 Modelling of the underlying (S1, S2, S3)

In this section, we describe each step needed to simulate the underlying
(S1, S2, S3) under P and infer the dependence structure under P . This de-
pendence structure will then be used in the option pricing in Section 3.3. The
first step consists of fitting a GARCH(1,1) process on each marginal using
historical data.

Step 1: Calibration of the GARCH(1,1) processes.

At time t (valuation date of the option, say 3rd of November 2009), we
calibrate a GARCH process using ∆ past informations, corresponding to the
∆ trading days prior to t. For each underlying asset Si, i = 1, 2, 3, we find µ̂i,
ŵi, α̂i and β̂i as well as the daily volatilities σ̂i,s for each time t−∆ < s 6 t.
The ∆ estimated standardized innovations are then obtained as

(Z1,s, Z2,s, Z3,s)s∈]t−∆,t] :=

(
η̂1,s
σ̂1,s

,
η̂2,s
σ̂2,s

,
η̂3,s
σ̂3,s

)
.

(Zi,s)s denotes the stochastic process Zi as a function of s. In the GARCH(1,1)
model used to calibrate the marginals, the standardized innovations are
N (0, 1). We obtained the corresponding estimated standardized innovations
in the interval (0, 1) by applying Φ, the cdf of the standard normal distribu-
tion N(0, 1). Let us denote by U the corresponding variables

(U1,s, U2,s, U3,s)s :=

(
Φ

(
η̂1,s
σ̂1,s

)
,Φ

(
η̂2,s
σ̂2,s

)
,Φ

(
η̂3,s
σ̂3,s

))

s

. (11)

The dependence structure between (Z1,s)s, (Z2,s)s and (Z3,s)s is the same as
between (U1,s)s, (U2,s)s and (U3,s)s because a copula is invariant by a change
by an increasing function (see Joe [1997] for instance).

Step 2: Dependence under P .
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At time t, we fit a copula on the joint distribution of (U1,s, U2,s, U3,s)t−∆<s6t

as follows. The copula density cP (u1, u2, u3) is equal to

c12(u1, u2; θ12)c13(u1, u3; θ13)c23|1
(
F2|1;θ12(u2|u1; θ12), F3|1;θ13(u3|u1; θ13); θ23|1

)

(12)
where c12, c13 and c23|1 are three parametric copula densities with respective
parameters θ12, θ13 and θ23|1, and where F2|1;θ12 denotes the conditional cdf of

U2 given U1 = u1. The estimates of the parameters θ̂12, θ̂13 and θ̂23|1 depend
on the time t at which the estimation is done and also on the size of the time
window ∆ (here we have ∆ daily observations between ]t−∆, t]). Note that
θα where α = 12, 13 or 23|1 is a generic notation for the parameter(s) of the
copula and may represent a vector of parameters if the parametric copula
depends on more than one parameter. To simplify, we restrict ourselves to
well-known classes of one or two-parameter copulae. In the example, we
investigate the Gaussian, T -Student, Gumbel, Clayton, Joe, Frank, BB1,
BB6, BB7, BB8 as well as their rotated versions (by 90◦, 180◦ (survival) and
270◦). To do so we use the R-package of Brechmann and Schepsmeier [2011].

Notice also that the decomposition (12) depends on the order of the vari-
ables. We discuss later methods to determine an appropriate order. For
illustration we assume the order of the variables to be S1, S2 and S3. The
dependence between S1 and S2 is modeled by c12 and the one between S1

and S3 by c13. We further examine c23|1 which is the dependence between
S2 and S3 conditional to S1. The conditional distribution cannot be ob-
served directly. To obtain pseudo observations that are distributed along
the conditional distribution, we use (11) and calculate for each observation
s ∈ [t−∆, t],

u2|1s : = F2|1;θ12(u2s|u1s; θ̂
P
12)

u3|1s : = F3|1;θ13(u3s|u1s; θ̂
P
13) (13)

where the conditional distribution F2|1;θ̂P
12

is obtained by

F2|1;θ̂P
12

(u2|u1; θ̂
P
12) =

∂

∂u1

C12(u2|u1; θ̂
P
12) =: hu1

(u2; θ̂
P
12) (14)

and F3|1;θ̂P
13

similarly. We refer to Aas et al. [2009] where estimation and sim-

ulation algorithms for pair-copula constructions are provided and discussed.
In particular the “h” functions needed in (14) are given in Aas et al. [2009]
for the Gaussian, Clayton, Gumbel and T -Student distributions, in Czado et
al. [2012] for the BB1 and BB7 copulae. They can easily be calculated for
other copulae (using Joe [1996]).
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Step 2 is completed when the dependence structure is chosen and that
the estimated parameters are calculated (θ̂P12, θ̂

P
13 and θ̂P23|1). The superscript

P recalls that the estimation of the dependence structure is obtained from
historical data of the assets’ prices, therefore it corresponds to the dependence
structure under the objective measure P .

The pair-copula construction can easily be extended to higher dimensions.
Bedford and Cooke [2001, 2002] introduced for this the notion of regular (R)
vines using a sequence of linked trees for the identification of the bivariate
building blocks. As the tree number increases the number of conditioning
variables increases as well. In the first tree no conditioning is needed, while in
the last tree the number of conditioning variables is d−2, where d is dimension
of the data. Two simple subclasses of R-vines are often considered, called C-
and D-vines. D-vines are especially useful for time ordered variables, while
C-vines require the existence of a root node for each tree (see Czado [2010]
for an easy derivation of their joint density).

We discuss now model selection choices of pair-copula constructions in
three dimensions. First, in three dimensions the tree structure of C-,D- and
R-vines coincide. Only the order of the variables, the family of pair-copulae
and their parameters need to be chosen. Aas et al. [2009] suggested for D-
vines to put the pairs with the strongest dependence in the first tree. This is
done to have a parsimonious model and enhances further estimation stability.
Dißmann et al. [2011] extended this idea to general R-vines in a tree wise
fashion. It starts by giving all possible pairs a weight such as the absolute
value of the empirical Kendall’s. Then they applied a maximal spanning
tree algorithm to determine a tree with a maximal sum of weights and set
this tree to the first tree of the R-vine. Standard information criteria such
as AIC and BIC are then used to select the best fitting pair-copula family
from a set of considered pair-copulas for each edge pair in the first tree.
Finally, the corresponding parameters are estimated using either inversion
of Kendall’s tau or maximum likelihood for each pair. Given the results of
the first tree, a sample for the conditional bivariate distributions are created
(compare to (13)) and the next tree is selected in a similar fashion among all
pairs allowed by the proximity condition necessary for R-vines (see Bedford
and Cooke (2002)).

Given the tree structure and the pair-copula families full maximum likeli-
hood estimation of the parameters is feasible up to 20 dimensions, however it
can be extended to even higher dimensions if one restricts the choice of pair-
copulae in higher trees (see Heinen and Valdesogo [2009], Brechmann et al.
[2012] and Brechmann and Czado [2011]) and resorts to sequential estimation
of the copula parameters (see Czado et al. [2012] for C-vines and Haff [2012]
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for D-vines). Dißmann et al. [2011] extended the sequential estimation of
the copula parameters to general R-vines.

Steps 1 and 2 correspond to an inference for margins approach (IFM)
introduced by Joe [2005] and Joe and Xu (1996) commonly used for the
estimation of marginal and copula parameters. Here marginal parameters
are estimated first and an approximative sample from a copula distributions
(compare to (11)) is formed. Estimation of the copula parameters is then
based on this sample. Kim et al. [2007] demonstrate that one needs a strong
misspecification in the marginal model for the IFM approach to fail in the
estimation of the copula parameters. If the R-vine model for the dependence
part is fully specified and full maximum likelihood is used for the copula
parameters based on copula data, then this is exact IFM. If we use sequential
estimation for the copula parameters we extend the IFM method by using
a different estimation method. The asymptotic behavior of this approach is
studied for D-vines in Haff [2012].

3.3 Pricing of a Trivariate Option

In this section, we describe how to price an option written on three mar-
ket indices. This methodology will then be applied to examples in Sections
4 and 5. To price an option one needs the dynamics of the underlying in-
dices under the probability measure Q. We assume that the copula under Q
belongs to the same family as the one determined under P , but may have
different parameters. In Step 3, we describe how to simulate the underly-
ing indices (S1, S2, S3) under Q for an arbitrary set of parameters θQ12, θ

Q
13

and θQ23|1. In Step 4, we explain how to simulate an option price and cali-

brate at the same time the model (and therefore determine θQ12, θ
Q
13 and θQ23|1).

Step 3: Simulation of (S1, S2, S3) under Q.

Given a set of parameters θQ12, θ
Q
13 and θQ23|1, we simulate observations from

the D-vine specification (10)
(
UQ
1,s, U

Q
2,s, U

Q
3,s

)
s<t6T

(15)

with the dependence structure identified in Step 2, but with a parameter set

ΘQ :=
(
θQ12, θ

Q
13, θ

Q
23|1

)
. (16)

To simulate from a D-vine, we refer to Algorithm 2 on page 187 of Aas et al.
[2009]. From the D-vine data (15), we can obtain recursively the standardized
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residuals ZQ
i,s such that

ZQ
i,s = Φ−1

(
UQ
i,s

)
=

ri,s − rf +
σ2

i,s−1

2

σi,s

. (17)

This is a consequence of the dynamics (5) under Q. The algorithm is recur-
sive. Given initial volatilities σi,0 for i = 1, 2, 3 (equal for instance to the
square root of the unconditional variance level wi

1−βi−αi
), one can get the first

innovation ri,1 using the first line of (5). Then using the second line of (5) for

given αi, βi and ωi, one computes σ2
i,1 for i = 1, 2, 3. Then, ZQ

i,1 is obtained
by the ratio of ri,1 and σi,1. The full process is then constructed recursively.

Step 4: Model Calibration and Pricing.

The option price at time t is equal to

pt = e−rf (T−t)EQ [g(S1(T ), S2(T ), S3(T ))|Ft] . (18)

For a given parameter ΘQ in (16) we simulate (S1(T ), S2(T ), S3(T )) from
Step 3. To estimate the price at time t, pt, one uses as inputs the prices Si(t)
observed in the financial market at time t. An estimate p̂mc

t (ΘQ) of (18) is
then calculated by Monte Carlo methods.

The remaining question is about the choice of the parameter set ΘQ.
Estimating this parameter set corresponds to calibrating the pricing model.
Let us relate this to a simpler and well-known problem. Assume that the
pricing model is the Black-Scholes model, the pricing formula of an option
written on a single stock depends on the risk-free rate r and the volatility
σ. The volatility parameter σ such that the market price of the option
is equal to the model price (Black-Scholes formula) is called the “implied
volatility”. In a multidimensional Black-Scholes model, one would have an
“implied correlation matrix”. In our setting we have the set of parameters
ΘQ that we can infer from market data, and therefore an “implied” copula
under Q.

Recall that prices depend on time. Consider past observations of prices
of the trivariate option, say at dates ti, i = 1..n, the set of parameters ΘQ

needed to characterize the copula CQ is calculated at time t such that it
minimizes the sum of quadratic errors

min
ΘQ

n∑

i=1

(
p̂mc
ti
(ΘQ)− pMti

)2
(19)
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where pMti denotes the market price of the trivariate option at the date ti,
and p̂mc

ti
is the Monte Carlo estimate of its price obtained by the procedure

described in Step 3.

In the case of a path-dependent contract, the technique is similar, where
the price at t given in (18) is now calculated as

e−rf (T−t)EQ

[
g
({

Si(s)s∈[0,T ]

}
i

)
|Ft

]
.

4 Empirical Analysis

We first describe the data, then present our numerical results.

4.1 Description of the Data

Our data come from the secondary market for exchange-listed structured
products on the New York Stock Exchange2. In May 2008, there were 24
index-linked notes written on multiple market indices (for a total volume of
US$590 million). We selected two structured products to illustrate our study.
Both products are linked to three indices and were quoted daily3.

We now describe these trivariate basket options for which we have daily
quotes of the prices from their respective issuance date to November 2, 2009.
Daily log-returns of each index involved in these structured products are also
available over the period under study. MIB and IIL are “Capital Protected
Notes Based on the Value of a Basket of Three Indices”. MIB and IIL are
two similar products issued by Morgan Stanley, therefore we only describe
one of them. The notes IIL are linked to the Dow Jones EURO STOXX
50SM Index, the S&P500 Index, and the Nikkei 225 Index (let us denote
them respectively by S1, S2 and S3). They were issued on July 31st, 2006
at an initial price of $10 and matured on July 20, 2010 (which correspond
roughly to 1,006 trading days). Their final payoff is given by

$10 + $10max

(
m1S1(T ) +m2S2(T ) +m3S3(T )− 10

10
, 0

)
(20)

2See Bernard et al. [2011] for more information about these exchange-listed structured
products.

3All information about these products is contained in the official prospectus supple-
ments that were publicly available on www.amex.com and now listed on www.nyse.com.
They can also be obtained upon request from the authors.
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where mi = 10
3Si(0)

such that m1S1(0) + m2S2(0) + m3S3(0) = 10 and the

percentage weighting in the basket is 33.33% for each index. On July 31st,
2006, m1 = 0.000917803, m2 = 0.002643329, and m3 = 0.000222122.

4.2 Estimation of rf

We now describe how to estimate the risk-free rate. Duan [1995] showed
that a GARCH(1,1) model could reflect well the implied volatility surface
(the smile with respect to the strike and the decay with respect to the time
to maturity). Unsurprisingly it gives reasonable estimates of the implied
risk-free rate to price structured products written on one index.

The contracts MIB and IIL were five-year contracts issued by Morgan
Stanley. Both are five-year contracts. To check whether the GARCH(1,1)
model gives reasonable prices, we consider other contracts issued by Morgan
Stanley, with similar long-term maturity, but written on a single index. Our
estimate of the risk-free rate is then not influenced by the modeling of the
dependence. To do so, we use the contract PDJ written on the Dow Jones
Industrial Average, DJIA (issued on Feb 25, 2004 with maturity date of Dec
30, 2011), and the contract PEL written on the S&P500 (issued on March
25th, 2004 with maturity date of Dec 30, 2011). Both contracts pay semi-
annual coupons of respectively 0.4% and 0.5% (at the end of June and end
of December) and their final payoff is calculated as

$10 + $10max

(
0,

1
8

∑8
i=1 Sti − S0

S0

)

where S0 is the initial value of the underlying at the issuing date, and where
ti = 30th December of each year (starting in 2004 and ending in 2011).

For each of these contracts, we fit a GARCH(1,1) process based on a time
window ∆ of 250 days (about one year of data) on respectively historical
data of S&P500 and DJIA. We then use Duan’s [1995] change of measure
given by (5) and simulate the price using different values for a continuously
compounded risk-free rate r ∈ (1%, 10%). We then solve for the value of
r such that the model price coincides with the market price. We did this
calculation for 5 dates for each contract, 31th December 2004, 2005, 2006,
2007 and 2008.

In Figure 1, we represent simulated prices on Dec 31st, 2004 of the con-
tract PEL with respect to the risk-free rate. The higher rf the least valuable
the contract is. It illustrates the importance of controlling the effect of the
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risk-free rate if we want to discuss the change in the dependence structure
under P and under Q. Here the “implied risk-free rate” r is about 4.03% on
December 31, 2004.
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Figure 1: Price obtained by the model of Duan (1995) for the contract PEL
as a function of the risk-free rate r (with 10,000 Monte Carlo simulations to
draw this graph). On Dec 31st, 2004, it is quoted at $9.60.

Date 12/31/04 12/31/05 12/31/06 12/31/07 12/31/08
r for PDJ 4.3% 5.0% 6.1% 4.1% 2.0%
r for PEL 4.0% 4.6% 5.3% 3.4% 2.6%
ZC yield 4.05% 4.82% 5.03% 3.85% 2.3%

Table 1: Implied risk-free rate used to price the contracts PDJ and PEL,
expressed as a continuously compounded annual rate. We also report the
continuously compounded rates of the US zero-coupon yield curve (the daily
rate is obtained by rf = r/250). Note that it is not exactly a “daily” rate but
the time step is a “trading day”.

In Table 1 we report the values for the “implied risk-free rate” r such
that the respective market values of the contracts are approximately equal
to the estimates obtained by Monte Carlo simulations. We also report the
corresponding rate from the US yield curve. For example, at the end of
December 2004, the time to maturity of the PEL contract is about 1754
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days (with an approximation of 250 trading days per year for the period
after November 2009). A zero-coupon bond (from the US yield curve) of
such maturity yields a continuously compounded interest rate of 4.05% per
annum. Note that the differences between the US yield curve and the implied
risk-free rates for PDJ and PEL are small. In addition these contracts are
subject to default risk, therefore there could be a risk premium embedded in
the interest rate that we neglect here.

This preliminary study shows that the GARCH(1,1) model is able to
reproduce accurately the market prices and that the risk-free rate used in the
pricing could either be obtained as an implied interest rate or directly from
the US yield curve. Note that prices at issue are hard to reproduce and to
fit because they include commissions. On purpose, we choose to evaluate the
contracts at several dates posterior to the issuance date by several months.

4.3 Contract IIL

We now apply the four steps that we described in Section 3 to study the
contract IIL in details.

Step 1: Calibration of the GARCH(1,1) processes.

We first fit a GARCH(1,1) over the entire period from July 2006 to
November 2009 on the daily log-returns of S1 (Dow Jones EURO STOXX
50SM), S2 (S&P500 index), and S3 (NIKKEI 225 index). We then split
the period into 3 subperiods of 290 trading days(from March 2006 to April
2007, from May 2007 to July 2008, and from August 2008 to November 2009)
and fit a GARCH(1,1) for each subperiod. In Table 2, the estimates of the
GARCH(1,1) are reported. The first column corresponds to the full period
of observations (March 2006 to November 2009). The three other columns
correspond to the three subperiods previously described. We note that in all
cases, αi + βi is close to 1 but strictly less than 1, as it should be. Note also
that in the second subperiod, the daily log-returns are on average negative
or very close to 0, because it includes the recent financial crisis.

In addition to the parameters of the GARCH process, we also give the
average daily volatilities for the full sample and for each subperiods. It is
calculated as

σ̄i,t :=
1

K

t+K∑

s=t

σ̂i,s

multiplied by
√
250 to obtain an annual volatility (rather than a daily volatil-

ity), and where K denotes the number of days in the observation period. It
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is striking how the volatility changes throughout the three periods. The
dependence is also changing drastically such as it is described in Step 2.

Full sample period 1 period 2 period 3
µ̂1 0.000350 0.000907 -0.000494 0.000743
ω̂1 3.76e-06 9.88e-06 1.027e-05 7.57e-06
α̂1 0.1343 0.1598 0.1482 0.1062

β̂1 0.8575 0.7275 0.8063 0.8854
µ̂2 0.000414 0.000664 -0.000513 0.000593
ω̂2 1.85e-06 2.72e-06 8.95e-06 5.42e-06
α̂2 0.0932 0.0338 0.0513 0.119

β̂2 0.900 0.903 0.899 0.876
µ̂3 0.000107 0.000525 -0.000594 0.0000213
ω̂3 4.63e-06 4.75e-06 6.09e-06 1.83e-05
α̂3 0.127 0.0643 0.142 0.197

β̂3 0.863 0.896 0.851 0.782

σ̄1,t

√
250 24.8% 14.5% 21.2% 38.7%

σ̄2,t

√
250 23.2% 10.3% 20.6% 38.8%

σ̄3,t

√
250 27.4% 17.5% 25.8% 39.1%

Table 2: Estimated parameters of GARCH(1,1) for S1 (STOXX50 ), S2

(S&P500 ) and S3 (NIK225 ). σ̄i,t denotes the average of the daily volatil-
ities over the period under study (July 2006 to November 2009).

Step 2: Dependence under P .

We first investigated the strength of the dependence between each pair
out of {S1, S2, S3}. The strongest dependence appears to be between S1

(European index) and S2 (US Index), then between S1 (European index)
and S3 (Asian index). This can be seen from the values of Kendall’s tau
reported in Table 3. Table 3 also shows that Kendall’s tau depends on the
period.

To further explore the dependence structure including tail behavior, we
constructed bivariate scatter plots of the copula data (U1,s, U2,s, U3,s) of (11)
for the three subperiods together with empirical contour plots for pairs of
standardized innovations (Z1,s, Z2,s, Z3,s). From the non elliptical shapes of
some contour plots in Figure 2 we see that non-symmetry and tail dependence
are visible, thus a more general D-vine model for the dependence will be more
appropriate than a Gaussian model.

Recall that D-,C- and R-vines coincide in three dimensions and thus we
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S1 − S2 S1 − S3 S2 − S3

Full 0.404 0.202 0.079
Period 1 0.314 0.197 0.104
Period 2 0.384 0.239 0.075
Period 3 0.495 0.181 0.062

Table 3: Overall dependence measured by Kendall’s tau for the full sample
and then for each of the 3 periods.

use the general R-vine selection procedure of Dißmann et al. [2011] to select
an appropriate D-vine to the copula data at each subperiod. In particular
the selection procedure in three dimensions is sequential, i.e the first two
pairs of variables are selected, which have the largest absolute dependence
and then the resulting conditional pair-copula. For the data at hand this will
be according to Table 3 the pairs (1, 2) and (1, 3) for the unconditional pair-
copulae, while the resulting conditional pair-copula is c23|1. Next we have to
choose the pair-copula families for c12 and c13, respectively. This will be done
using the Akaike information criterion (AIC), for which Brechmann [2010] has
shown the best performance among several alternatives. Allowable bivariate
copula families were the independence, Gauss, T -Student, Clayton, Gumbel,
Frank, Joe, BB1, BB6, BB7, BB8, survival Clayton and survival Gumbel
copula. Corresponding copula parameters are estimated by maximizing the
bivariate likelihood. Now only the copula family choice for c23|1 remains; for
this pseudo observations as defined in (13) are formed based on the chosen
pair copula families and their parameters estimates for c12 and c13. Finally,
the copula family is chosen again by AIC and the corresponding parameters
are estimated by maximizing the bivariate likelihood. Since the marginal
parameters are not reestimated when the copula parameters are estimated
this correspond to a IFM type approach as already discussed earlier.
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Figure 2: Scatterplot and normalized empirical contour plots of pairs of standard-
ized innovations for each pair. Panel A,B,C correspond to 3 subperiods respectively
from March 2006 to May 2007, from May 2007 to July 2008, and from August 2008
to November 2009.
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The results of the above selection procedure for each subperiod are given
in Table 4. As expected we see evidence of asymmetric tail dependence
especially for the unconditional pair-copulae. The fit for the unconditional
pair-copulae is good, when compared to empirical Kendall’s τ values.

Period 1 c12 c13 c23|1
Family BB1 Gauss Frank

θ̂ (0.14,1.48) 0.30 0.08

τ(θ̂) .35 .20 .01
empirical τ .31 .20 -
Period 2 c12 c13 c23|1
Family T -Student SGumbel Frank

θ̂ (0.57,11.3) 1.26 -1.06

τ(θ̂) .39 .21 -.12
empirical τ .38 .24 -
Period 3 c12 c13 c23|1
Family Gauss BB7 Frank

θ̂ .70 (1.11,.32) -1.06

τ(θ̂) .50 .18 -.12
empirical τ .50 .18 -

Table 4: Selected vine models with pair-copula choice, parameter estimates
and corresponding estimated (un)conditional Kendall’s τ . For comparison
empirical Kendall’s τs of unconditional pairs in the vine specification are
also provided.

Step 3 and 4: Pricing the basket option

For the purpose of illustration, the pricing of the contract IIL is done
at the end of the first period and we use the GARCH(1,1) fitted on the
1st period in Table 2. We perform also the pricing at the end of the second
period, on the 1st of August 2008 and use the GARCH(1,1) parameters fitted
on the 2nd period in Table 2. Our results are reported in Table 5. They are
obtained using Monte Carlo simulations with 10,000 simulated trajectories
for each underlying asset.

It is clear that the Monte Carlo estimates reported in Table 5 do not
match the market prices. One explanation may come from the fact that the
dependence under Q is indeed different from the dependence under P . One
could change the parameters of the copulae appearing in Table 4 so that the
Monte Carlo estimates match the market quotes. However there are many
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other potential explanations for the discrepancy observed in Table 5.

Another explanation may come indeed from the presence of credit risk.
The contract guarantees a minimum payoff of 10 and an additional option
payoff. For example a quote of 9.93 on August 1st, 2008 reflects an annual
interest rate r higher than 3.5% (calculated as 9.93 = 10e−495r/252). To
calculate this number we observe that there were about 495 trading days left
before the maturity of the product and an option has a non-negative value.
This is not possible unless the risk-free rate reflects the high credit risk at
that time of the contract’s issuer.

Moreover the contracts MIB and IIL are retail investment products. The
secondary market for these markets has been criticized for not being liquid.
In this market, issuers “choose” market prices. This may explain why these
contracts appear underpriced.

Nov. 4th, 2007
(end period 1)

Aug. 1st, 2008
(end period 2)

Market price
(quote from the NYSE)

11.16 9.93

Monte Carlo Estimate
using parameters in Tables 2 and 4

11.8 (0.05) 10.4 (0.05)

Monte Carlo Estimate with a
Multivariate Gaussian Distribution

11.3 (0.06) 10.3 (0.06)

Table 5: Pricing of IIL contract on November 4th, 2007 and on August 1st,
2008. Standard deviations for the Monte Carlo estimates are reported in
parenthesis.

The last line of Table 5 corresponds to the Gaussian multivariate case.
To perform the comparison, we need to describe a multivariate Gaussian
distribution in the context of a pair-copula construction. Assume that the
innovations (Z1,s, Z2,s, Z3,s) is a multivariate normal distribution with mean
(0, 0, 0) and covariance matrix




1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1


 (21)

One has τ12 = 2
π
arcsin(ρ12) and τ13 = 2

π
arcsin(ρ13). The conditional dis-

tribution of (X2, X3) given X1 = x is a bivariate normal distribution with

mean

[
xρ12
xρ13

]
and variance

[
1− ρ212 ρ23 − ρ12ρ13

ρ23 − ρ12ρ13 1− ρ213

]
so that τ23|1 =
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2
π
arcsin

(
ρ23−ρ12ρ13√
1−ρ2

12

√
1−ρ2

13

)
. Then we can easily get ρ23 as ρ23 = ρ12ρ13 +

sin
(πτ23|1

2

)√
1− ρ212

√
1− ρ213.

The paper presents a methodology to price multivariate derivatives with
dependent GARCH(1,1) processes. However to draw firm conclusions on
whether the dependence under P is the same as the dependence under Q,
more data (and better data) is needed. The next section illustrates how
the price of a multivariate derivative is strongly affected by the dependence
structure and therefore why it is important to not only model dependence
using the Gaussian or the T -Student copula.

5 Additional Examples

In this paper we have used pair-copula constructions to model and fit the
dependence between more than two indices. The use of a pair-copula con-
struction accommodates a much wider range of dependence structure than
the multivariate Gaussian copula. To illustrate this last point we present
two additional examples of trivariate derivatives written on 3 indices S1, S2

and S3. In particular these examples show that a misspecification of the
dependence can have an important effect on the price of the derivative.

5.1 Comparison of Copulae

We assume S1, S2 and S3 are individually modeled by GARCH(1,1) processes
with Gaussian innovations so that we can apply Duan’s [1995] change of
measure to perform risk-neutral pricing. Denote by τ12 and τ13 the Kendall’s
tau between the standardized innovations of S1 and S2, respectively of S1 and
S3. Denote by τ23|1 the Kendall’s tau for the distribution of the innovations
of S2 and S3 conditional on the innovations of S1.

Table 6 presents 6 different assumptions on the dependence structure. In
Scenario 1 of Table 6, we assume that the innovations follow a multivariate
normal distribution since it is often used by practitioners. The correspon-
dence between the usual parameters of a multivariate Gaussian distribution
and the pair-copula construction is described in the previous section follow-
ing (21). We then investigate the case when the dependence is based on the
T -Student copula with a small degree of freedom (say 3). Finally, we look
at more general pair-copula constructions. For the dependence structure,
we compare the copulae reported in Table 6. To do so, we choose to vary

23



τ12 while keeping τ13 and τ23|1 constant. For the GARCH(1,1) parameters,
we choose for µi, ωi, αi and βi the parameters fitted in Period 3 in Table 2
because they correspond to the most volatile period and dependence is more
critical when the volatility in the market is high. Furthermore assume that
S1(0) = S2(0) = S3(0) = 100.

Table 6: Copulae compared in Figures 3 and 4.
“SGumbel” stands for the survival Gumbel copula

(respectively “SClayton” refers to the survival Clayton copula).

Scenario 1 corresponds to the multivariate Gaussian distribution.

Scenarios S1 − S2 S1 − S3 S2, S3|S1

1 Gauss
Gauss, τ12 > 0

τ13 = 0.7
Gauss
τ23|1

2 T -Student, df = 3, ρ12 > 0
T -Student

df = 3, τ13 = 0.7
T -Student
df = 3, τ23|1

3 Clayton for τ1,2 > 0
Clayton
τ13 = 0.7

Clayton
τ23|1

4 Gumbel for τ1,2 > 0
Gumbel
τ13 = 0.7

Gumbel
τ23|1

5 SClayton for τ1,2 > 0
SClayton
τ13 = 0.7

SClayton
τ23|1

6 SGumbel for τ1,2 > 0
SGumbel
τ13 = 0.7

SGumbel
τ23|1

Pair-Copula Constructions

In scenario 2 of Table 6, we assume that the dependence between Z1 and
Z2, between Z2 and Z3 and between Z2 and Z3 conditional on Z1 are all
T -Student copulae with d = 3 degrees of freedom. In this scenario one has
τ12 =

2
π
arcsin(ρ12), τ13 =

2
π
arcsin(ρ13) and τ23|1 =

2
π
arcsin(ρ23|1). In scenar-

ios 3, 4, 5 and 6 we investigate the Clayton and survival Clayton, as well as
the Gumbel and the survival Gumbel. They are one-parameter copulae and
there is a bijection between the parameter of the copula and Kendall’s tau
(see for example Brechmann and Schepsmeier (2011)).
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5.2 Multivariate Options Pricing

In this section we consider several multivariate contracts. Consider two
derivatives linked to the maximum of 3 assets. Let X1(T ) and X2(T ) de-
note their respective payoffs paid at maturity T

X1(T ) = max (max{S1(T ), S2(T ), S3(T )} − 100, 0) (22)

or

X2(T ) = max{S1(T ), S2(T ), S3(T )} −min{S1(T ), S2(T ), S3(T )} (23)

It is clear from Figures 3 and 4 that the use of the Gaussian copula or the
T -Student copula tend to underestimate the price of the derivatives (22) and
(23) written on the maximum when the market does not follow a multivariate
Gaussian distribution. Note that for these derivatives the Clayton depen-
dence tend to give much higher prices than the Gaussian dependence. This
is consistent with the findings of Van den Goorbergh et al. (2005) for bivari-
ate derivatives. If the market follows a multivariate Gaussian dependence,
then the Clayton copula would overestimate the prices of the multivariate
derivatives X1 and X2 studied in this section.

Insert here Figures 3 and 4 with prices for X1 and X2.

For a given Kendall’s tau in the market (or for a given Pearson corre-
lation), the different scenarios give different prices. Using pair-copula con-
struction may therefore explain prices in the market that are higher than
the ones obtained with the Gaussian dependence structure. It is therefore of
utmost importance to use a flexible and accurate dependence structure for
that type of options.

5.3 Multivariate Options Hedging

Practitioners are not only interested in pricing derivatives but also in hedging
them. Hedging is a very important issue. Indeed it is not enough for banks
to sell derivatives at the “right” price, then they need to hedge the payoff of
these derivatives using the premium they receive at time 0.

Here, we propose to delta-hedge the derivativesX1 andX2. Delta-hedging
is a dynamic strategy. Theoretically it has to be implemented continuously.
In practice, one decides of a rebalancing frequency for the hedging portfolio.
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At each rebalancing date, it requires to compute the delta ∆t of the option
(or sensitivity of the option price to the underlying price). This consists of
differentiating with respect to Si(t) the price pt of the derivative at time 0
calculated earlier in (4). For example at time 0, we compute

∆i,t :=
∂pt(S1(t),S2(t),S3(t))

∂Si(t)

where pt(S1(t), S2(t), S3(t)) gives the price at time t as a function of the
underlying prices S1(t), S2(t) and S3(t). Practically ∆i,t is approximated by
finite difference. For example ∆1,0 is approximated by

p0(S1(0) + ε, S2(0), S3(0))− p0(S1(0), S2(0), S3(0))

ε

for a small value of ε > 0. The efficiency of the delta-hedging strategy is re-
lated to the accuracy in the estimation for ∆i,t. A mistake in the estimation
of the hedge ratio will therefore give rise to errors in the hedging and po-
tential losses for the seller of the option. The following example stresses the
importance of using the right dependence structure not only for the pricing
but also in order to get an appropriate hedge. In Figure 5 and Figure 6 we
report Monte Carlo estimates of ∆1,0 for the payoffs X1 and X2 under the
different assumptions on dependence listed in Table 6.

Insert here Figure 5 and Figure 6 with hedge ratios for X1 and X2.

From the graphs in Figures 5 and 6, it appears clearly that the hedge ra-
tios depend on the dependence assumptions. Surprisingly the relative values
for ∆1,0 under the 5 scenarios are not always ordered the same. For example,
assuming the the financial market behaves as in Scenario 3 (Clayton depen-
dence for each pair), then the deltas obtained with the trivariate Gaussian
multivariate distribution can either underestimate or overestimate the hedge
ratios ∆1,0.

6 Conclusion

In a dynamic copula setting, it is not clear why the dependence under the ob-
jective measure (in the actual world) should be the same as the dependence
under the risk-neutral measure. We describe the steps to price a multivariate
derivative in this setting and illustrate the study with a dataset of multi-
variate derivatives prices sold in the US. It is hard to draw firm conclusions
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from the only data example of this paper. It however provides an illustration
of how the pair-copula construction methodology can be applied to model
dependence and price multivariate derivatives. We further illustrate that the
choice of the dependence has important effects on the pricing of multivariate
derivatives and that the Gaussian or the T -Student copula may underprice
such derivatives. Finally, note that the empirical analysis also highlights im-
portant changes in volatility in the past ten years and therefore the presence
of regimes. The price of basket options is very sensitive to the modeling of
volatility as well as shifts of regimes. Therefore regime switching models may
be more appropriate for pricing long-term derivatives as the ones studied in
the paper.
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Figure 3: Price of the payoff (22) with maturity 1 year (252 days) when S1,
S2 and S3 are GARCH(1,1) with the parameters as in Table 2, third period,
the dependence is as in Table 6 and the annual risk-free rate is 4%. Panel A
corresponds to τ23|1 = 0.1 and Panel B to τ23|1 = 0.7. Prices are calculated
in the 6 scenarios presented in Table 6.
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Figure 4: Price of the payoff (23) with maturity 1 year (252 days) when S1,
S2 and S3 are GARCH(1,1) with the parameters as in Table 2, third period,
the dependence is as in the table 6 and the annual risk-free rate is 4%. Panel
A corresponds to τ23|1 = 0.1 and Panel B to τ23|1 = 0.7. Prices are calculated
in the 6 scenarios presented in Table 6.
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Figure 5: Delta at time 0 with respect to S1 of the payoff (22) with maturity
1 year (252 days) when S1, S2 and S3 are GARCH(1,1) with the parameters
as in Table 2, third period, the dependence is as in Table 6 and the annual
risk-free rate is 4%. Panel A corresponds to τ23|1 = 0.1 and Panel B to
τ23|1 = 0.7. Prices are calculated in the 6 scenarios presented in Table 6.

Panel A

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

τ
1,2

De
lta

τ
1,3

=0.7 and τ
2,3|1

=0.1 

 

 
Scenario1
Scenario2
Scenario3
Scenario4
Scenario5
Scenario6

Panel B

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.2

0.25

0.3

0.35

0.4

0.45

0.5

τ
12

De
lta

τ
1,3

=0.7 and τ
2,3|1

=0.7 

 

 
Scenario1
Scenario2
Scenario3
Scenario4
Scenario5
Scenario6

30



Figure 6: Delta at time 0 with respect to S1 of the payoff (23) with maturity
1 year (252 days) when S1, S2 and S3 are GARCH(1,1) with the parameters
as in Table 2, third period, the dependence is as in the table 6 and the
annual risk-free rate is 4%. Panel A corresponds to τ23|1 = 0.1 and Panel B
to τ23|1 = 0.7. Prices are calculated in the 6 scenarios presented in Table 6.
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Publ. Inst. Statis. Univ. Paris, 8, 229–231.

Van den Goorbergh, R., C. Genest, and B. Werker (2005): “Bi-
variate Option Pricing Using Dynamic Copula Models,” Insurance: Math-
ematics and Economics, 37(1), 101–114.

34


	Introduction
	Bivariate Option Pricing
	Distribution of the underlying assets under P
	Pricing of a bivariate option

	Multivariate option pricing when there are more than two indices
	Multivariate Dependence Modeling
	Modelling of the underlying (S1,S2,S3) 
	Pricing of a Trivariate Option

	Empirical Analysis
	Description of the Data
	Estimation of rf
	Contract IIL

	Additional Examples
	Comparison of Copulae
	Multivariate Options Pricing
	Multivariate Options Hedging

	Conclusion
	References

