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An Optimal Insurance Design Problem
under Knightian Uncertainty

Abstract

This paper solves an optimal insurance design problem in which both the insurer
and the insured are subject to Knightian uncertainty about the loss distribution. The
Knightian uncertainty is modeled in a multi-prior g-expectation framework. We ob-
tain an endogenous characterization of the optimal indemnity that extends classical
theorems of Arrow (1971) and Raviv (1979) in the classical situation. In the presence
of Knightian uncertainty, it is shown that the optimal insurance contract is not only
contingent on the realized loss but also on another source of uncertainty coming from
the ambiguity.
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1 Introduction

In the classical optimal insurance indemnity framework, it is assumed that both the insurer
and the insured have full knowledge about the loss distribution. See, for example, Arrow
(1971), Borch (1962), Raviv (1979), Gollier (1987), Gollier and Schlesinger (1996), Golubin
(2006) and Bernard and Tian (2009a, 2009b). Some authors have been incorporated the
presence of asymmetric information into the insurance market, such as in Breuer (2005),
Crocker and Snow (1985), Cummins and Mahul (2003), Landsberger and Meilijson (1999),
Rothschild and Stiglitz (1976)), but the assumption on the loss distribution is still retained.

Accurate estimation of the loss distribution is crucial for insurance market, since market
participants purchase or sell the insurance contract and compute the insurance premium
relying on the distribution of the underlying loss variable. While accurate estimation is
possible in some insurance markets with a large amount of data and a stable history (for
instance, automobile insurance and life insurance market), it becomes problematic in some
other insurance markets, such as insurance against natural diasters or terrorism. In those
insurance markets, the specific events in the insurance indemnity are so rare that the estima-
tion methodology is subjective and limited. The realized loss, however, could be substantial.
1 Therefore, market participants tend to have serious concerns on the loss distribution.

This paper solves Arrow-Raviv’s optimal insurance indemnity problem in the presence of
agents’ ambiguities on the loss distribution in a multi-prior framework of Knightian uncer-
tainty. Knightian uncertainty has been first proposed in Knight (1921) and evidence is given
by Ellsberg (1961). Bewley (2002) proposes a Knightian uncertainty using an incompleteness
preference. We follow an axiomatic setting, initiated by Gilboa and Schmeidler (1989) and
Schmeidler (1989). Intuitively, since the agent (insured or insurer) has no precise knowledge
on the loss distribution, she believes that the true probability belongs to a set of probability
distributions and her welfare is described by the worst case element in the set of probability
distributions of the loss variable. In a precise manner, P is a set of probability measures,
and the expected wealth of the agent is represented by a nonlinear expectation (represented
by minP∈P EP [.]), namely in a non-expected Choquet utility framework.

There is a vast literature extending the classical insurance design problem to non-expected
utility framework, for instance, Doherty and Eeckhoudt (1995), Carlier and Dana (2008),
Carlier, Dana and Shahidi (2003), Chateauneuf, Dana and Tallon (2000), Johnson et al.
(1993). Among others, Chateauneuf, Dana and Tallon (2000) examine the optimal risk-
sharing rule among agents in a Choquet capacity framework, and show that the classical
characterization of Pareto efficient allocation holds when the Choquet capacities are iden-
tical for all agents. They further show that Pareto efficient is comonotone under some
conditions on the capacities. Moreover, the characterization of Pareto efficient is solved as
full insurance if there is no aggregate uncertainty. See also Billot, Chateauneuf, Gilboa and
Tallon (2000), and Rigotti, Shannon and Strzalecki (2008). The characterization of Pareto
efficient allocation on the insurance market, however, are not available as the insured risk
ensures a random aggregate risk.

This paper is devoted to characterizing precisely the optimal insurance policy for a general
class of non-linear expectation, a g-expectation, that extend the classical theorems of Arrow

1We refer to Cummins et al. (2004) and Froot (2001) for the catastrophe market and the insurance risk.
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(1971) and Raviv (1979). A g-expectation is developed by Duffie and Epstein (1992) and by
Chen and Epstein (2002) to deal with Knightian uncertainty (or ambiguity) in a continuous
time setting. We argue that such a g-expectation is plausible in the insurance market for
several reasons. First, this framework has received wide success in other economic contexts.
For instance, Nishimura and Ozaki (2004, 2007), Obstfeld (1994) in economics, Uppal and
Wang (2003) in finance. Second, even though the insurance indemnity’s payout considered in
this paper is realized only at one future time, the uncertainty in the insurance market might
be driven by other factors in addition to the loss risk variable, and these factors could be
path-dependent and state-dependent. Third, as g-expectation satisfies the time consistency
property, we can extend the approach to discuss the optimal multi-period insurance contract,
such as in Cooper and Hayes (1987), Vaquez and Watt (1999) in a Knightian uncertainty
setting. On the other hand, Choquet-expected-utility is not time consistent unless it is
generated by a recursive multiple-priors (Epstein and Schneider (2003)).

There are three main contributions in this paper. (1). We derive the optimal risk sharing
rule when the insured has ambiguity on the loss distribution, while the insurer has perfect
information and is risk neutral. We study the case when an insurance company has more
information and is able to fully pool risk, and the insured has less information and is risk-
averse. We derive an endogenous relationship to characterize the optimal insurance policy in
this situation. It is shown that the optimal insurance indemnity is a deductible contract but
its deductible depends on state event. We refer to is as a contingency contract. This reflects
the ambiguity level of the insured: it reduces to Arrow’s deductible when the ambiguity
disappears. (2). We propose a “quantity” to measure the effect of ambiguity by using
the variance of the (random) deductible. As it turns out, both the ambiguity and the risk
aversion jointly affect the randomness of the deductible (as was also mentioned in Alary et al.
(2010)). On the one hand, the variance tends to increase when the ambiguity level increases,
while the risk aversion is fixed. On the other hand, the variance tends to increase when the
agent becomes more risk-averse in a reasonable range of the risk aversion parameter. Hence,
the effect of ambiguity becomes stronger for more risk-averse insured. (3). We extend Raviv
(1979)’s optimal insurance policy in the g-expectation framework. This situation might occur
in a reinsurance market in which both parties of the contract have ambiguities on the loss
distribution. We characterize the optimal policy for the insurer by a nonlinear equation that
extends Raviv (1979).

Our results are distinct from previous literature in that the optimal insurance indemnity
is allowed to be state-dependent. The intuition is as follows. A nonissuable risk is generated
in the presence of ambiguity, hence a contingency insurance contract emerges in the optimal
insurance sharing agreement. In other words, given the ambiguity on the loss distribution,
an insurance contract that depends only on the underlying loss variable is not rich enough to
insure all the risk from the insured’s perspective. Therefore, an optimal deductible, at least in
theory, should write on the loss event itself instead of the loss amount. 2 To some extent our
analysis shares some insights with analysis in incomplete market in Doherty and Schlesinger

2Actually, many insurance contracts in the real world are contingent. We use a simple example to illustrate
a contingent contract. First consider an individual exposed to a loss risk of $1 million or $2 million with
equal probability. If the insured is one hundred percent confident with her estimation of the risk, a deductible
contract, say $1 million deductible, works perfectly for her by paying $0.6 million dollars (we choose the load
factor as 20 percent). We now assume that the insured has ambiguity on the loss distribution estimation,
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(1983a). Doherty and Schlesinger (1983a) show that the classical deductible contract is not
optimal anymore in the presence of nonissuable risk (see also Gollier and Schlesinger (1995)).
In this paper, we examine the optimality and the contingency of the insurance contract in
the ambiguity framework, so we are able to study the effect of ambiguity on the insurance
contract and how to risk sharing efficiently in insurance market in which the ambiguity level
is strong.

Some previous papers have discussed the insurance contract with ambiguity from different
perspectives. Hogarth and Kunreuther (1985, 1989) analyze the effect of ambiguity on the
insurance market. Kunreuther, Hogarth and Meszaros (1993) investigate the market failure
when the insurer has ambiguity on the market. Mukerji and Tallon (2001) demonstrate that
the market has no trading at all when the difference of ambiguities is large enough among
the agents in the market. See also Alary et al. (2010), Cabantous (2007), Ho, Keller and
Kunreuther (1989) for related analysis in ambiguity frameworks. This paper has a different
focus point. Instead of examining specific insurance contracts from the marketplace (such
as a deductible or a coinsurance), we study the optimal insurance indemnity in a Knightian
framework and characterize the contingency form of the optimal indemnity.

The layout of this paper is as follows. Section 2 introduces an insurance market with
Knightian uncertainty, and presents the optimal insurance design problem in which both the
insured and the insurer have ambiguity on loss distribution. In Section 3 we first characterize
the optimal insurance contract for the insured when the insurer has perfect knowledge on
the loss variable and risk-neutral. The solution in Section 3 is extended in Section 4 in
which both agents have Knightian uncertainties. We discuss some special cases in details
to illustrate our characterizations of the optimal indemnity. Conclusions are formulated in
Section 5. All proofs are presented in the Appendix.

2 Model

In this section, we first introduce the notation related to the modeling of ambiguity, then
present the optimal insurance design problem that we solve in subsequent sections.

2.1 Ambiguity Setting

The insurance contract is a one-period contract with maturity T and written on a loss
variable X. For simplicity and to restrict ourselves on the ambiguity only, we assume that
the state is perfectly observable at the maturity T of the contract. Because of the ambiguity

say, 50% certain on the loss $1 million but has a serious concern that the loss can be significantly large, say
$10 million, in extremely bad situation. However the insured who is not sure how small the probability of
this rare event is. In this case, a loss variable X is represented by X(ω1) = 1, X(ω2) = 2, X(ω3) = 10 on
a sample space {ω1, ω2, ω3}. Clearly X captures the risk of loss but can’t capture the uncertainty on the
loss risk. Therefore, a better insurance contract for the insured might be written upon the occurrence of a
specified event, instead of the loss variable X since the expected loss amount is not certain under ambiguity.
Without the ambiguity, the distribution of the loss variable X is unique so a contract written on the loss
variable is enough to insured the risk. However, when the distribution of the loss variable is not unique as
it is the case in the ambiguity setting, a contract contingent on the state variable appears.
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on the loss risk, however, the market participants are uncertain about the loss distribution
and henceforth of the optimal insurance contract.

We follow the economic setting stated in Chen and Epstein (2002) (See page 1409-1415
and Appendix A-C therein) to introduce the ambiguity, which is written as follows. Let
B(·) = {B(t)}t>0 be a standard one-dimension Brownian motion that is defined on a complete
probability space (Ω, {Ft}06t6T , P ), X is defined over FT , and P is a benchmark probability
measure. The market participant’s ambiguity about the loss distribution is represented by
a so called aggregation g(y, z, t) : R× R× [0, T ] → R. Given any random variable observed
at the maturity time T , under mild conditions which will be specified in the next section, it
is known that there exists a unique process (Yt) such that3

{
Yt = Y +

∫ T

t
g(Ys, zs, s)ds−

∫ T

t
zsdB(s), t ∈ [0, T ],

YT = Y.
(1)

where {Yt, zt} are determined endogenously. In this insurance market, we are interested by
Y0. This initial value Y0 is called the g-expectation of YT , and can be written as

Eg[YT ] := Y0. (2)

The g-expectation Y0 extends the expected value of the terminal reward YT , which represents
the minimal expected value of YT among all possible ambiguity distributions.

This setting to model Knightian uncertainty using g-expectation is quite general. To
illustrate this setting we next give three special cases that include the standard expectation
under a subjective probability, the case of heterogeneous beliefs, and the case of stochastic
recursive utility.

A. Classical Case.

When the aggregation g(y, z, t) = 0, the g-expectation is reduced to the classical expectation
EP [·] under the subjective probability measure P . That is, Y0 = EP [Y ]. Therefore, when
both the insured and insurer have a zero aggregation, and Y is the utility of the final wealth,
it reduced to the classical cases studied in Arrow (1971) or Raviv (1979). This classical
situation will serve as a benchmark case for our subsequent discussion.

B. Heterogeneous Beliefs

This heterogeneous probability situation arises when the aggregation is chosen as a linear
functional form, g(y, z, t) = bz. In this case, it can be shown that the g-expectation is

Eg[Y ] = EP

[
exp

(
−
1

2
b2T + bB(T )

)
Y

]
. (3)

3Technically speaking, a g-expectation utility is a solution of a backward stochastic differential equation
(BSDE) in the terminology of Peng (1997). See El Karoui, Peng and Quenez (1997), and Peng (1997) for an
exhaustive review on the theory of g-expectations. The idea to represent Knightian uncertainty in terms of
g-expectation has been developed in Duffie and Epstein (1992), Chen and Epstein (2002).
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The parameter b represents various beliefs of the market participants. To see the importance
of b, consider one agent who has no ambiguity on the market and uses the expectation
under a subjective probability P . Consider another agent who has ambiguity modeled by
the aggregation g(y, z, t) = bz. We see that Eg[Y ] = EQ[Y ], where

dQ

dP
= exp

{
−
1

2
b2T + bB(T )

}
(4)

or equivalently, for all measurable subset A,

Q(A) = EP

[
exp

{
−
1

2
b2T + bB(T )

}
1A

]
. (5)

Therefore, the second agent has a different belief about the loss distribution. The relative en-
tropy can help us to compare the ambiguity level. After some computations (using Girsanov
theorem), it can be shown that the entropy is equal to

EP

[
dQ

dP
log

(
dQ

dP

)]
=

1

2
b2T . (6)

which can be intuitively interpreted as follows. The ambiguity level increases when b in-
creases, and the ambiguity disappears when b = 0. The positive parameter b directly mea-
sures the ambiguity level or the divergence among the heterogeneous beliefs.

This example is related to two particular cases of asymmetric information situations.
Consider one case in which the insured has a perfect observation of her risk and thus no
uncertainty. But the insurer might have another probability distribution about the loss
risk. Another sensible case corresponds to the opposite situation. The insurer has access
to historical data and has therefore a better knowledge of the loss while the insured has
a different probability distribution. Overall, the probability distributions of the same loss
variable for both the insured and the insurer can be different and thus the ambiguity occurs.
Therefore, this example is related to Rothschild and Stiglitz (1976)’s analysis on the insurance
market under asymmetric information.

We now extend the case in which both agents believe that the loss distribution belongs to a
class of probability distributions, instead of a single distribution. This kind of ambiguity can
be modeled by the (stochastic) recursive utility, which is also a special case of g-expectation.

C. Recursive Stochastic Utility

The stochastic recursive utility is developed in Duffie and Epstein (1992) and extended in
Chen and Epstein (2002). Consider a subliner function g such that there exists a convex
subset Λ ⊆ R that verifies for all z, t,

g(z, t) = sup
λ∈Λ

< λ, z > .

It has been proved in Chen and Epstein (2002), Theorem 2.2, that the g-expectation is
obtained as the worse expectation (with respect to a set P of probability measures)

Eg[Y ] = min
Pθ∈P

EPθ
[Y ], with

dPθ

dP
= exp

{∫ T

0

θtdB(t)−
1

2

∫ T

0

|θt|
2dt

}
(7)
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where θ takes value in Λ and satisfies the Novikov condition 4.

The set of probability measures P represents the Knightian uncertainty and can be de-
scribed as follows

P :=

{
Pθ : B(t)−

∫ t

0

θsds is a Pθ-Brownian motion.

}

In this setting, the g-expectation corresponds to the multi-prior minPθ∈P
EPθ

[.] introduced
by Gilboa and Schmeidler (1989) and Schmeidler (1989). The set Λ represents the ambiguity
level. The larger Λ the larger of the ambiguity on the loss distribution. For example, let
Λ = {x : |xi| 6 κ, ∀i}, then g = κ|z| and this example has been used in several economical
situations for ambiguity 5. The larger the positive number κ is, the higher the ambiguity on
the loss distribution.

2.2 Pareto-efficient Insurance Design

This section presents the optimal insurance design problem in the presence of Knightian
uncertainty. Assume the insured faces a risk of loss denoted by the positive random variable
X which is observed at its maturity T . The insured pays an upfront premium P0 to an insurer
at time zero in return for a promise to receive a contractually agreed indemnity payment
I(X) upon the occurrence of a specified event. Assume the initial wealth of the insured and
insurer is W0 and W n

0 , respectively. Then the terminal wealth of the insured is

W = W0 − P0 −X + I(X) (8)

and the terminal wealth of the insurer is

W n = W n
0 + P0 − c(I(X))− I(X) (9)

where c(.) represents the cost. To highlight the effect of ambiguity we choose a linear cost
structure, c(I(X)) = ηI(X) for a constant η > 0. We also assume that the premium P0

is a function of the actuarial value EP [I(X)]. These two assumptions are standard in the
optimal insurance design literature and we will explain more the second assumption below.

The insured and insurer’s risk aversion are interpreted by the strictly concave functions
U(·) and V (·), respectively. As demonstrated in the last section, both the insured and
insurer’s ambiguity on the loss variable are introduced by a g-aggregation g(·) and another
g-aggregation f(·), respectively. We assume that the functions g(y, z, t) and f(x, π, t) :
R× R× [0, T ] → R satisfy

(H1) g(·) and f(·) are continuous in R× R× [0, T ] for a.a.ω and have continuous bounded
derivatives respectively in (y, z) and (x, π) for each t ∈ [0, T ];

(H2) both g(0, 0, ·) and f(0, 0, ·) are square-integrable.

4That is, EP

[
exp

(
1
2

∫ T

0
|θt|

2dt
)]

< ∞.
5See Chen and Epstein (2002) and Nishimura and Ozaki (2007) for its application of this particular

g-expectation.
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(H3) g(·), f(·) are strictly concave functions with respect to both y and z.

The problem under consideration is the following optimal insurance design problem:

max
I:06I(X)6X,x(0)>k

y(0)

where x(0) is the g-expectation of V (W n) under the aggregation f(·), and y(0) is the g-
expectation of U(W ) under the aggregation g(·). The constant k is a given acceptable utility
floor of the insurer, x(0) > k is often called the participation constraint in principal-agency
literature (see Raviv (1979)). Given the interpretation of x(0) in terms of the minimal
expected value of V (W n) under a set of probability measures, the participation constraint
states that under any available probability measure under ambiguity, the corresponding
expected value of V (W n) is always greater or equal to k. 0 6 I(X) 6 X is also standard in
literature.

This problem can be reduced to a sequence of the following optimal insurance design
problem (for each 0 6 ∆ 6 EP [X]):

(A) max
I

y(0) s.t.





0 6 I(X) 6 X

EP [I(X)] = ∆
x(0) > k.

under a further constraint EP [I(X)] = ∆ for any ∆ ∈ [0,EP [X]]. When the insurer is risk-
neutral this condition can be viewed as a premium condition (see Problem (B) below). 6 In
the general case, this condition states that under the benchmark measure P the expected
value of the indemnity I(X) is fixed as ∆. In what follows we focus on Problem (A) for a
fixed ∆.

Definition 2.1 The insurance indemnity I(X) is called admissible for a given loss X and
an acceptable utility floor k, if I(X) satisfies the constraints in Problem (A). We shall denote
by A(X, k), the set of all admissible insurance indemnities I(X).

An admissible insurance indemnity I∗(X) is called optimal if it attains the maximum of
y(0) over A(X, k). There is a remarkable feature in this setting. In the presence of ambiguity,
as will be shown in detail, the ambiguity aggregation g(·) and the loss variable X jointly
affect the insured and the insurer’s decision. In the classical situation, since the aggregation
is null, only the loss variable plays a role in the optimal insurance contract.

3 Optimal Insurance Design from the Insured’s Per-

spective

In this section we consider a special case of Problem (A) in which the insurer is risk-
neutral and has no ambiguity about the loss distribution, that is f = 0. Note that x(0) =

6To impose such a condition is quite standard to derive the optimal insurance contract as in Arrow (1971).
It is also available to extend it to be a g-expectation such as in Ji and Zhou (2010).
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EP [W n
0 + P0 − (1 + η)I(X)]. Problem (A) is reduced to be an extended Arrow problem as

follows

(B) max
I

y(0) s.t.

{
0 6 I(X) 6 X

EP [I(X)] = ∆.

Problem (B) can be viewed as a Pareto-efficient risk sharing between a risk neutral insurer
and an insured is subject to Knightian uncertainty.

Let I∗(x) be optimal and (y∗(·), z∗(·)) be the solution of

{
−dy(t) = g(y(t), z(t), t)dt− z(t)dB(t),
y(T ) = U(W ∗).

(10)

Set

g∗y(t) = gy(y
∗(t), z∗(t), t) and g∗z(t) = gz(y

∗(t), z∗(t), t). (11)

where gy, gz represent the first-order derivatives of the function g(y, z, t) with respect to y

and z, respectively.

In order to derive the maximum principle, it is useful to introduce the adjoint process
associated with I∗(X), n(·), which is defined by the following stochastic differential equation

{
dn(t) = g∗y(t)n(t)dt+ g∗z(t)n(t)dB(t),
n(0) = 1.

(12)

The next theorem presents a complete characterization of the optimal insurance indem-
nity when the insured has ambiguity while the insurer is risk-neutral and has no ambiguity
about the loss variable.

Theorem 3.1 Assume (H1), (H2) and (H3). Then there exists a unique optimal insurance
indemnity to Problem (B). The optimal insurance indemnity I∗(X) is characterized by

I∗(X) = min
{
(X − d)+, X

}
(13)

where

d = W0 − P0 − (U ′)−1

(
µ∗

n(T )

)
, (14)

µ∗ is a constant and (U ′)−1 is the inverse function of U ′(·), n(T ) is the solution of the adjoint
equation (12) at time T and µ∗ is solved by the equation EP [I

∗(X)] = ∆.

Proof. See Appendix. �

The equation (13) is an endogenous characterization of the optimal insurance contract
I∗(X). According to Theorem 3.1, the optimal insurance contract can be interpreted as a
deductible contract with a random deductible d (since n(T ) is random). The deductible
d is deterministic if and only if there is no ambiguity. In the right side of equation (13),
the adjoint process n(T ) relies on I∗(X) in the forward stochastic differential equation (12).
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In fact, 1
n(T )

is the shadow price of the state as a Lagrange multiplier in the optimization

problem (B). The hard part in this characterization lies in the determination of {y∗(·), z∗(·)}.
In the g-expectation literature (see El Karoui, Peng and Quenez (1997, 2001) ), y(·) is often
calculated as the worse case of the expectations among a group of probability measures and
z(·) is the Malleation derivative of y(·).

We illustrate this characterization in the three special cases, which were introduced before
in Section 2.

Case A. Classical Case.

When g(·) = 0, it is easy to see that the adjoint process n(T ) is independent of the
insurance contract I∗(X), that is, n(T ) = n(0) = 1. As a consequence, the deductible level
is constant, and equal to

d = W0 − P0 − (U ′)−1(µ∗),

and the optimal contract I∗(X) is reduced to the Arrow (1971)’s optimal deductible.

Case B. Heterogenous Beliefs.

Let g(y, z, t) = bz. As explained above, Problem (B) becomes

(C) max
I

EQ[U(W )] subject to

{
0 6 I(X) 6 X,

EP [I(X)] = ∆.

where Q is the probability measure by the insured. This problem simply states that the
insured is a subjective expected utility maximizer with subjective probability Q and the
insurer is risk-neutral and uses the objective probability P to calculate the premium. The
optimal contract is written as

I∗(ω) = max{X(ω)− d(ω), 0}

where d(ω) is a state-dependent deductible. In this case, as g(·) is a linear function, the
adjoint process n(T ) is also independent of the optimal insurance contract I∗(·) and depends
only on the ambiguity. In fact, n(T ) = exp

{
−1

2
b2T + bB(T )

}
, then the deductible level is

d = W0 − P0 − (U ′)−1
(

µ∗

n(T )

)
where the constant µ∗ solves

EP

[
min

{(
X −W0 + P0 + (U ′)−1

(
µ∗

n(T )

))+

, X

}]
= ∆.

There are several important implications about the solution I∗(·) as follows. (1), I∗(·)
depends on the loss X and on the state event ω. In other words, the optimal indemnity
cannot be written on the loss variable X itself, and the optimal insurance indemnity I∗ must
depend on the state event ω when the insured has ambiguity. (2), the contingency feature
of the optimal indemnity I∗(X) is related to the incompleteness of insurance market: as the
insured has not a perfect knowledge on some states (say, for example, catastrophe events),
the insurance contract that depends on the loss only can’t fully insure the risk of X in some
scenarios. As there is uncertainty on the probability distribution, there is an uninsurable risk
in the insurance market and I∗(X) has to depend on this additional source of uncertainty.
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To some extent our solution is similar to the analysis in Doherty and Schlesinger (1983b),
Gollier and Schlesinger (1995). In Doherty and Schlesinger (1983b), Arrow’s deductible is
shown not optimal anymore in the presence of uninsurable risk. Gollier and Schlesinger
(1995) examine the optimal form of insurance for multiple risks. We demonstrate the same
result in the presence of ambiguity, and present the explicit solution of the optimal insurance
contract. (3), to determine the parameter µ∗ in the last formula, the joint distribution of X
and the Radon-Nikodym derivative dQ

dP
is required. (4), the insured’s ambiguity is related to

the randomness of the deductible level.

The last point (4) captures the effect of ambiguity on the optimal indemnity. To under-
stand this point, let us ignore the computation of the parameter µ∗ and use the variance of

U ′−1
(

1
n(T )

)
as a key quantity to measure the effect of the ambiguity of the insured. In what

follows we perform some computations for a class of utility functions U(·) and verify that
the variance of the deductible is a helpful proxy to measure the ambiguity effect .

Case of Log utility

Assume first that U(x) = log(x). After straightforward calculations, the variance of the
deductible d(ω) is proportional to eb

2T − 1 which we write as

V ariance(d) = α
(
eb

2T − 1
)

(15)

where α > 0 is a constant. By virtue of equation (6), we have an expression of the variance
of the deductible as a function of the entropy

V ariance(d) = α
(
e2EP [ dQdP log( dQ

dP )] − 1
)
. (16)

Equation (16) is useful for our analysis: it links the variance of the deductible and the relative
entropy explicitly. The left side of (16) is the variance of the deductible level. The right side
is expressed explicitly by the relative entropy of Q with respect to the subjective probability
measure P . The higher the ambiguity, the higher the relative entropy EP

[
dQ

dP
log

(
dQ

dP

)]
,

therefore, the larger the variance of the deductible. In the extreme case, when P = Q, that
is, no ambiguity at all, the variance of d(ω) is equal to 0, so the deductible level becomes
deterministic.

To further understand the joint effect of the ambiguity and risk aversion on the variance
of the deductible, we next compute the explicit solution for a CRRA utility function.

Case of CRRA utility

Consider now U(x) = x1−A

1−A
, A > 0, A 6= 1. Straightforward calculation yields

V ariance(d) = β

(
e

b2T (2−A)

A2 − e
b2T (1−A)

A2

)
, (17)

where β > 0 is constant and one can verify that 7

∂V ariance(d)

∂b
> 0, for A 6 2 (18)

7Note that ∂V ariance(d)
∂b = β 2bT

A2 e
b2T (1−A)/A2

{eb
2T/A2

(2 − A) − (1 − A)} and ∂V ariance(d)
∂A =

−β eb
2T (1−A)/A2

A3 {eb
2T/A2

(4−A)− (2−A)}.
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Figure 1: Effect of Ambiguity and Risk Aversion

This graph displays the variance of the deductible as a function of the relative aversion parameter
A and the ambiguity index b. A moves between 0.9 and 1.5, b moves between 0.1 and 2.
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and
∂V ariance(d)

∂A
6 0, for A 6 4 (19)

Equation (18) shows that the variance of the deductible level increases when the ambiguity
level b increases, while keeping the risk aversion parameter A constant and bounded by 2.
This result is intuitive as the insured’s ambiguity increases the randomness of the deductible
level. Equation (19) states that the effect of ambiguity becomes stronger when the insured
is more risk-averse for a reasonable range of the risk aversion parameter A. As insured tends
to be very risk averse and ambiguity simultaneously on some loss distribution in insurance
market, our analysis show that the classical deductible insurance is far away from the optimal
one from the insured’s perspective.

Figure 1 displays the joint effect of the ambiguity index and the risk aversion. As shown,
the variance increases when the ambiguity index b increases, or when the risk aversion pa-
rameter A decreases. Moreover, the effect of ambiguity is more significant than the effect of
the risk aversion. We also observe that the variance behaviors relatively “flat” when the risk
aversion parameter changes. It implies that the ambiguity contributes a first-order effect
while risk averse effect is of second order.

Remark. Problem (C) can be solved in a slightly more general framework, alternatively,
when the probabilities of both the insured and the insurer are equivalent. 8 Similar to
Bernard and Tian (2009a, 2009b), it can be shown that the optimal contract I∗(·) has the

8It means that both the insured and the insurer agree on all zero probability events and one hundred
percent sure events, but might have different probabilities otherwise. If so, dQ

dP exists.
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same form as stated in (13) and the deductible level is equal to

d = W0 − P − U ′−1

(
µ∗

dP

dQ

)

which is identical to the previous solution of I∗(X) since dQ

dP
= n(T ). Therefore, the variance

of the deductible level is the same as (up to a constant) of the variance of U ′−1
(
µ∗ dP

dQ

)
in

general.

Case C. Stochastic Recursive Utility.

Let g(y, z, t) = k|z| in Chen and Epstein (2002). In this case Assumption (H1) does not
hold since the absolute function is not differentiable. It can still be shown that I∗(X) =
max{(X−d)+, X} is a sufficient condition for the optimal contract.9 The numerical method
for backward stochastic differential equation can be used to find n(T ) and µ∗ numerically.
See Ma, Protter, Martin and Torres (2002).

4 Pareto-optimal insurance contract

In this section we present the characterization of the optimal indemnity solution of Problem
(A). Let I∗(X) be optimal and (y∗(·), z∗(·)) (resp. (x∗(·), π∗(·)) be the corresponding utility
processes of (10) for aggregation g(·) and aggregation f(·), respectively.

Set
g∗y(t) = gy(y

∗(t), z∗(t), t) and g∗z(t) = gz(y
∗(t), z∗(t), t);

f ∗

x(t) = fx(x
∗(t), π∗(t), t) and f ∗

π(t) = fπ(x
∗(t), π∗(t), t)

Similar to the extended Arrow problem of the last section, the adjoint processes n(·) and
m(·) associated with I∗ are defined as follows.





dn(t) = g∗y(t)n(t)dt+ g∗z(t)n(t)dB(t),
n(0) = 1,
dm(t) = f ∗

x(t)m(t)dt+ f ∗
π(t)m(t)dB(t),

m(0) = 1.

(20)

The main result of this paper is given as follows.

Theorem 4.1 Assume (H1), (H2) and (H3). The insurance indemnity I∗(X) is optimal to
Problem (A) if and only if there exists constants λ > 0 and constant µ such that

I∗(X) = min
{
(X −H(λ, µ;X))+, X

}
(21)

where H(λ, µ;X) is a random variable such that H(λ, µ;X)(ω), for any ω ∈ Ω, is the unique
solution y of the following equation

U ′ (W0 − P0 − y)n(T )− λV ′ (W n
0 + P0 − (1 + η)(X(ω) + y))m(T ) = µ, (22)

9Precisely, the derivative involved in n(t) is replaced by the undifferentiated. See Ji and Zhou (2010) for
details.
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where m(T ) and n(T ) are the solutions of the adjoint equations (20) at time T . The param-
eters λ and µ in the solution are solved by both the premium constraint and the participation
constraint simultaneously.

Proof. See Appendix. �

When f(·) = g(·) = 0, then n(T ) = m(T ) = 1, and equation (22) is reduced to be

U ′(W0 − P0 − y) = µ+ λV ′ (W n
0 + P0 − (1 + η)(X(ω) + y)) . (23)

It is easy to see that y is a (deterministic) function of the loss variable and the last equation
becomes the fundamental functional equation (10) in Raviv (1979). When f(·) = 0, and the
insurer is risk-neutral, then m(T ) = 1 and V ′(·) is a constant, and Theorem 4.1 is reduced
to Theorem 3.1. In general, H(λ, µ;X) depends also on the state variable so the optimal
insurance characterized by equation (21) is contingency.

In the heterogeneous belief environment,H(λ, µ;X) can be given explicitly. Let g(y, z, t) =
b1z, and f(y, z, t) = b2z. The parameters b1 and b2 represent the ambiguity level on the loss
variable for the insured and the insurer, respectively. Assume U(x) = V (x) = log(x). Then
H(λ, µ;X) is the solution y of the following equation

n(T )

W0 − P0 − y
− λ

m(T )

W n
0 + P0 − (1 + η)(X + y)

= µ (24)

where {
n(T ) ≡ dQed

dP
= exp

{
−1

2
b21T + b1B(T )

}
,

m(T ) ≡ dQer

dP
= exp

{
−1

2
b22T + b2B(T )

} (25)

in which Qed and Qer represent the respective estimated probability measures of the insured
and the insurer. The solution y in equation (24) is obtained from

a1 + a2y + (1 + η)µy2 = 0

and written as follows.

H(λ, µ;X) =
−a2 −

√
a22 − 4µ(1 + η)a1
2(1 + η)µ

(26)

where

a2 = −µ (W n
0 + P0 + (1 + η)(W0 + P0 −X))− λ

dQer

dP
+ (1 + η)

dQed

dP

and

a1 = µ(W0 − P0) (W
n
0 + P0 − (1 + η)X) + λ(W0 − P0)

dQer

dP

− (W n
0 + P0 − (1 + η)X)

dQed

dP
.
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We now demonstrate the optimal insurance indemnity when both the insured and the
insurer have ambiguity on the loss variable. By Theorem 4.1, the optimal insurance indem-

nity depends on the loss variable X and the ambiguities, represented by {dQed

dP
, dQ

er

dP
}. By

equation (25), dQed

dP
and dQer

dP
satisfy

log

(
dQer

dP

)
=

b2

b1
log

(
dQed

dP

)
+

1

2
b2(b2 − b1)T. (27)

Therefore, we are able to plot the optimal insurance indemnity I∗ that depend on the loss

variable X and the Radon-Nikodym dQed

dP
of the insured’s probability measure. Figure 2

displays the optimal indemnity in three different cases: b1 < b2, b1 = b2, and b1 > b2, re-
spectively. As shown, the optimal indemnity is, in its shape, similar to Raviv’s optimal
indemnity when b1 = b2 = 0, but the effects on the “coinsurance”, the marginal coverage ∂I∗

∂X
,

are different. In Panel A, b1 < b2, so the insurer is more ambiguity on the loss distribution
than the insured. We see that the coinsurance of insurance indemnity decreases when the
insured has more insurance. The intuition is as follows. As the insurer has a higher ambi-
guity, the Pareto-efficient contract requires a higher coinsurance for the insurer. Hence, the
coinsurance becomes relatively smaller for the insured even when the insured’s ambiguity
increase. On the other hand, when b1 > b2 in Panel C, the insured is more ambiguity on the
loss distribution than the insurer. By the same intuition, the coinsurance of the insurance

indemnity increases when dQed

dP
increases. When the ambiguity of the insured dominates, the

coinsurance increases with the increase of the ambiguity of the insured, in a Pareto-efficient
agreed insurance contract. In Panel B, when the insured and the insurer have the same
ambiguity, the coinsurance behaves stable. In all Panels, the coinsurance and the deductible
are all state-dependent.

The three following tables give a1, a2 and H for the range of parameters considered in
Panel A, B and C of Figure 2.

Table 1: Values of a1, a2 and H used for Figure 2, case b1 < b2

X 0 3 6 9
dQed

dP
a1 a2 H a1 a2 H a1 a2 H a1 a2 H

0.5 89.3 -27.4 3.85 67.8 -24.1 3.31 46.4 -20.8 2.58 24.9 -17.5 1.58
0.75 92 -28 3.87 71.3 -24.7 3.4 50.7 -21.4 2.76 30.1 -18.1 1.88
1 97 -28.9 3.95 77.2 -25.6 3.56 57.4 -22.3 3.02 37.6 -19 2.28

1.25 104 -30.2 4.07 85.5 -26.9 3.76 66.5 -23.6 3.34 47.6 -20.3 2.76
1.5 114 -31.8 4.21 96.2 -28.5 3.99 78 -25.2 3.7 59.9 -21.9 3.28

5 Conclusion

This paper characterizes in a theoretical manner the optimal insurance contract when both
the insurer and the insured have uncertainties on the loss distribution. It turns out that the
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Table 2: Values of a1, a2 and H used for Figure 2, case b1 = b2

X 0 3 6 9
dQed

dP
a1 a2 H a1 a2 H a1 a2 H a1 a2 H

0.5 88 -27.3 3.82 66.5 -23.9 3.27 45.1 -20.7 2.52 23.6 -17.3 1.51
0.75 86.5 -27.2 3.74 65.9 -23.9 3.23 45.3 -20.6 2.54 24.6 -17.3 1.58
1 85 -27.2 3.67 65.2 -23.9 3.2 45.4 -20.6 2.55 25.6 -17.3 1.65

1.25 83.5 -27.2 3.6 64.5 -23.9 3.16 45.5 -20.6 2.57 26.6 -17.3 1.73
1.5 82 -27.2 3.5 63.8 -23.9 3.13 45.7 -20.6 2.58 27.5 -17.3 1.8

Table 3: Values of a1, a2 and H used for Figure 2, case b1 > b2

X 0 3 6 9
dQed

dP
a1 a2 H a1 a2 H a1 a2 H a1 a2 H

0.5 88.9 -27.4 3.84 67.4 -24.1 3.3 46 -20.8 2.56 24.5 -17.5 1.56
0.75 86.6 -27.2 3.75 66 -23.9 3.24 45.3 -20.6 2.54 24.7 -17.3 1.59
1 84.2 -27.1 3.65 64.4 -23.8 3.17 44.6 -20.5 2.52 24.8 -17.2 1.61

1.25 81.7 -26.9 3.55 62.7 -23.6 3.1 43.7 -20.3 2.49 24.7 -17 1.62
1.5 79.1 -26.7 3.45 60.9 -23.4 3.03 42.8 -20.1 2.45 24.6 -16.8 1.64

optimal insurance contract has a similar shape with the insurance contract in the classical
framework, but the insurance contract is contingent on another source of uncertainty, in
addition to the loss variable. This additional source of uncertainty is driven by the ambiguity
on the probability distribution and the optimal contract itself depends on the uncertainty
and how different the insurer and the insured view about the distribution of the loss risk are.

Some loss risk in the insurance market such as catastrophe risk is rare but has a significant
impact on market participants when it occurs. As a consequence, agents could have very
different estimation on the loss distribution for the catastrophe risk. The paper demonstrates
that the higher the ambiguity level of the market participants, the bigger the difference
between the “contingent” optimal contract with the one without ambiguity. This paper shed
some light on the optimal risk sharing in those insurance markets where the ambiguity could
be strong such as earthquake insurance, tornadoes risk, volcanoes and insurance against
natural disasters in general.
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Appendix

Before proving Theorem 4.1, we first prove two lemmas. We use the notations defined in the
main text of the paper and will refer to the assumptions (H1), (H2) and (H3) as introduced
in Section 2.

Note that the following R−valued functionals

I(X) 7→ y(0),

I(X) 7→ x(0),

are concave under Assumption (H3). Applying classical results of convex analysis (Luen-
berger (1969)), it is straightforward to prove the following lemma.

Lemma A.1 We suppose (H1), (H2) and (H3). There exist real numbers λ > 0 and µ such
that the maximum objective function is given by

max
I(X)

{y(0) + λ(x(0)− k)− µ(EP [I(X)]−∆)} . (A1)

Furthermore, if the maximum is attained in Problem (A) by I∗(X), then it is attained in
(A1) by I∗(X). Conversely, suppose that there exist λo > 0, µo and 0 6 Io(X) 6 X such
that the maximum of

max
I

{y(0) + λo(x(0)− k)− µo(EP [I]−∆)}

is achieved with Io(X), then the maximum is achieved in Problem (A) by Io(X).

The second result is related to the first-order necessary condition of the optimal indem-
nity.

Let I∗(X) be optimal and (y∗(·), z∗(·)) (resp. (x∗(·), π∗(·))) be the corresponding state
processes of (10) for aggregation g(·) and aggregation f(·), respectively. Take an arbitrary
I(X) such that 0 6 I(X) 6 X, and 0 6 ρ 6 1 such that Iρ(X) = I∗(X) + ρ(I(X)− I∗(X))
falls in [0, X]. Define (yρ(·), zρ(·)) (resp. (xρ(·), πρ(·))) similarly when I(X) is replaced by
Iρ(X). To derive the first-order necessary condition in terms of small ρ, we let (ŷ(·), ẑ(·))
and (x̂(·), π̂(·)) be the solutions of the following BSDEs (variational equations):

{
−dŷ(t) =

[
g∗y(t)ŷ(t) + g∗z(t)ẑ(t)

]
dt− ẑ(t)dB(t),

ŷ(T ) = U ′(W0 − P0 −X + I∗(X))(I(X)− I∗(X)),
(A2)

{
−dx̂(t) = [f ∗

x(t)x̂(t) + f ∗
π(t)π̂(t)] dt− π̂(t)dB(t),

x̂(T ) = −V ′(W n
0 + P0 − (1 + η)I∗(X))(1 + η)(I(X)− I∗(X)),

(A3)

Set

ỹρ(t) = ρ−1[yρ(t)− y∗(t)]− ŷ(t),
z̃ρ(t) = ρ−1[zρ(t)− z∗(t)]− ẑ(t).
x̃ρ(t) = ρ−1[xρ(t)− x∗(t)]− x̂(t),
π̃ρ(t) = ρ−1[πρ(t)− π∗(t)]− π̂(t).

The following lemma is essential in our proof of the main result.
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Lemma A.2 Assuming (H1), (H2) and (H3), we have

lim
ρ→0

sup
06t6T

EP [ỹρ(t)
2] = 0,

lim
ρ→0

EP

[∫ T

0
| z̃ρ(t) |

2 dt
]
= 0.

lim
ρ→0

sup
06t6T

EP [x̃ρ(t)
2] = 0,

lim
ρ→0

EP

[∫ T

0
| π̃ρ(t) |

2 dt
]
= 0.

Proof. We only prove the first two equalities, the other two being similar. Set

W ρ = W0 − P0 −X + I∗(X) + ρ(I(X)− I∗(X)),

W ∗ = W0 − P0 −X + I∗(X).

From (10) and (A2), we have




−dỹρ(t) = ρ−1[g(yρ(t), zρ(t), t)− g(y∗(t), z∗(t), t)− ρg∗y(t)ŷ(t)
−ρg∗z(t)ẑ(t)]dt− z̃ρ(t)dB(t),

ỹρ(T ) = ρ−1[V (wρ
2(T ))− V (w∗

2(T ))]− ŷ(T ).

Let

Aρ(t) =

∫ 1

0

gy(y
∗(t) + λρ(ŷ(t) + ỹρ(t)), z

∗(t) + λρ(ẑ(t) + z̃ρ(t)), t)dλ,

Bρ(t) =

∫ 1

0

gz(y
∗(t) + λρ(ŷ(t) + ỹρ(t)), z

∗(t) + λρ(ẑ(t) + z̃ρ(t)), t)dλ,

Cρ(t) = [Aρ(t)− g∗y(t)]ŷ(t) + [Bρ(t)− g∗z(t)]ẑ(t).

Thus
{

−dỹρ(t) = (Aρ(t)ỹρ(t) +Bρ(t)z̃ρ(t) + Cρ(t))dt− z̃ρ(t)dB(t),
ỹρ(T ) = ρ−1[V (W ρ)− V (W ∗)]− ŷ(T ).

Using Itô’s formula to | ỹρ(t) |
2 we get

EP | ỹρ(t) |
2 +EP

∫ T

t

| z̃ρ(s) |
2 ds

= 2EP

∫ T

t

〈ỹρ(s), A
ρ(s)ỹρ(s) + Bρ(s)z̃ρ(s) + Cρ(s)〉ds+ EP | ỹρ(T ) |

2

6 KEP

∫ T

t

| ỹρ(s) |
2 ds+

1

2
EP

∫ T

t

| z̃ρ(s) |
2 ds+ EP

∫ T

t

| Cρ(s) |2 ds+ EP | ỹρ(T ) |
2,

where K is a constant. So

EP | ỹρ(t) |
2 +

1

2
EP

∫ T

t

| z̃ρ(s) |
2 ds

6 KEP

∫ T

t

| ỹρ(s) |
2 ds+ EP

∫ T

t

| Cρ(s) |2 ds+ EP | ỹρ(T ) |
2 .
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However, the Lebesgue dominated convergence theorem implies

lim
ρ→0

EP

∫ T

0

| Cρ(t) |2 dt = 0,

lim
ρ→0

EP | ỹρ(T ) |
2= 0.

Hence, applying Gronwall’s inequality, we obtain the result. �

Proof of Theorem 4.1:

The proof is divided into several steps. Let U = {ζ ∈ L2(Ω,FT , P ), 0 6 ζ 6 X}.

Step 1. (Necessary Condition). We prove that the insurance indemnity I∗(X) is optimal
to Problem (A), then there exists a constant λ > 0 such that

U ′(W ∗)n(T )− λV ′(W n,∗(T ))(1 + η)m(T )− µ 6 0, a.s. on M,

U ′(W ∗)n(T )− λV ′(W n,∗)(1 + η)m(T )− µ = 0, a.s. on (M∪N )c,
U ′(W ∗)n(T )− λV ′(W n,∗)(1 + η)m(T )− µ > 0, a.s. on N

whereW ∗ = W0−P0−X+I∗(X) andW n∗ = W n
0 +P0−c(I∗(X))−I∗(X), with xI∗(X)(0) = k,

where m(T ) and n(T ) are the solutions of the adjoint equations (20) at time T , and where
N and M are defined respectively as the states of no-insurance and full-insurance,

M , {ω ∈ Ω | I∗(X) = 0},

N , {ω ∈ Ω | I∗(X) = X}

For Iρ(X) = I∗(X) + ρ(I(X) − I∗(X)), by Lemma A.1, there exists a constant λ > 0
such that

y
Iρ(X)
0 + λ(x

Iρ(X)
0 − k)− µ(EP [I

ρ(X)]−∆) 6 y
I∗(X)
0 + λ(x

I∗(X)
0 − k)− µ(EP [I

∗(X)]−∆).

Dividing the inequality by ρ, sending ρ to 0, and applying Lemma A.2, we obtain

ŷ0 + λx̂0 − µEP [I(X)− I∗(X)] 6 0 (A4)

where ŷ0 and x̂0 are the corresponding solutions of (A2) and (A3) at time 0.

Applying Itô’s lemma to n(t)ŷ(t) + λm(t)x̂(t) yields

d[n(t)ŷ(t) + λm(t)x̂(t)]
= [ŷ(t)g∗y(t)n(t)− n(t)g∗y(t)ŷ(t)− 〈n(t), g∗z(t)ẑ(t)〉+ 〈ẑ(t), g∗z(t)n(t)〉]dt

+λ[x̂(t)f ∗
x(t)m(t)−m(t)f ∗

x(t)x̂(t) + 〈m(t)f ∗
π(t), π̂(t)〉+ 〈π̂(t), f ∗

π(t)m(t)〉]dt+ {...}dB(t)
= {...}dB(t).

Integrating from 0 to T and taking the expectation, we obtain

EP [n(T )U ′(W ∗)(I(X)− I∗(X))− λm(T )V ′(W n,∗)(1 + η)(I(X)− I∗(X))]− µEP [I(X)− I∗(X)]

= ŷ0 + λx̂0 − µEP [I(X)− I∗(X)] 6 0, (A5)

where (A4) is used in the second line.
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We first consider the case that M is a nonempty set. Since 0 6 I(X) 6 X is arbitrary,
we choose I(X) = I∗(X) on the complementary set of M and arbitrary over M. Then by
(A5) and I∗(X) = 0 over M, we obtain:

EP [(n(T )U ′(W ∗)− λm(T )V ′(W n,∗)(1 + η)− µ)(I(X)− I∗(X))] 6 0 (A6)

As I(X) can be arbitrage non-negative over M, it shows that for each ε > 0

P {ω | ω ∈ M, U ′(W ∗)n(T )− λV ′(W n,∗)(1 + η)m(T )− µ > ε} = 0. (A7)

By the continuous property of probability measure, we have

U ′(W ∗(T ))n(T )− λV ′(W n,∗(T ))(1 + η)m(T )− µ 6 0, ∀ω ∈ M, a.s.. (A8)

We now consider the characterization over N . Similarly, we choose I(X) = I∗(X) over
the complementary set of N , and arbitrary over N . Then we have

EP [(n(T )U ′(W ∗)− λm(T )V ′(W n,∗)(1 + η)− µ)(I(X)− I∗(X))] 6 0. (A9)

Since I(X) − X can be arbitrary negative random variable over N , by the same reason as
above for M, we show that

U ′(W ∗)n(T )− λV ′(W n,∗)(1 + η)m(T )− µ > 0, ∀ω ∈ N , a.s.. (A10)

At last, choose I(X) = I∗(X) over (M∪N ) and arbitrage over its complementary set.
Then

EP [(n(T )U ′(W ∗)− λm(T )V ′(W n,∗)(1 + η)− µ)(I(X)− I∗(X))] 6 0. (A11)

Since I(X)− I∗(X) can be any non-negative or negative over (M∪N )c, we see that

U ′(W ∗)n(T )− λV ′(W n,∗)(1 + η)m(T )− µ = 0, ∀ω ∈ (M∪N )c, a.s..

Therefore, the necessary conditions for I∗(X) have been proved.

Step 2. (Sufficient condition). We prove in this step the conditions in Step 1 are sufficient
condition for the optimal insurance contract I∗(X).

Let I(X) ∈ U with (y(·), z(·)) and (x(·), π(·)) be the corresponding trajectory. For

simplicity, we denote y
I∗(X)
t = y∗(t), x

I∗(X)
t = x∗(t) and z

I∗(X)
t = z∗(t) etc. By Lemma A.1,

it suffices to show that for any I(X) ∈ U ,

y0 + λ(x0 − k)− µ(EP [I(X)]−∆) 6 y∗0 + λ(x∗

0 − k)− µ(EP [I
∗(X)]−∆), (A12)

or equivalently, to prove

y0 − y∗0 + λ(x0 − x∗

0)− µEP [I(X)− I∗(X)] 6 0. (A13)
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Set

Î(X) = I(X)− I∗(X),

g1(y, z, t) = g(y∗(t) + y, z∗(t) + z, t)− g(y∗(t), z∗(t), t),

g2(y, z, t) = gx(y
∗(t), z∗(t), t)y + gz(y

∗(t), z∗(t), t)z.

Consider the following equation




−d(y(t)− y∗(t)) = [g(y(t), z(t), t)− g(y∗(t), z∗(t), t)]dt− (z(t)− z∗(t))′dB(t),
= [g1(y(t)− y∗(t), z(t)− z∗(t), t)]dt− (z(t)− z∗(t))′dB(t),

y(T )− y∗(T ) = U(W )− U(W ∗).

By Assumption (H3),

g1(y, z, t) 6 g2(y, z, t) ∀y, z, dP ⊗ dt− a.s.

U(W )− U(W ∗) 6 U ′(W ∗)Î(X) a.s.

We now appeal to the comparison theorem for BSDEs (see El Karoui, Peng and Quenez
(1997)), obtain, for all t

y(t)− y∗(t) > ŷ(t), P − a.s., (A14)

where ŷ(·) is the solution of (A2). Similar analysis shows that x(t)−x∗(t) > x̂(t), ∀t P−a.s.,

where x̂(·) is the solution of (A3).

Thus, we have

y0 − y∗0 + λ(x0 − x∗
0)− µEP [I(X)− I∗(X)]

6 ŷ0 + λx̂0−µEP [Î(X)]

6 EP

[
(n(T )U ′(W ∗)− λm(T )V ′(W n,∗)(1 + η)− µ)Î(X)

]

By similar proofs in the necessary part, those necessary conditions imply that

EP

[
(n(T )U ′(W ∗)− λm(T )V ′(W n,∗)(1 + η)− µ)Î(X)

]
6 0.

The sufficient conditions for I∗(X) have been proved.

Step 3.

Define the function

h(y) , U ′(W0 − P0 + y)n(T )− λV ′(W n
0 + P0 − (1 + η)(X(ω) + y))m(T ).

It is easy to check that h(y) is a monotonic function. Then H(λ, µ;X) is defined uniquely.
By step 1 and step 2, the optimal insurance contract is characterized as follows

I∗(X) = min
{
(X −H(λ, µ;X))+, X

}
.

Hence the proof is completed. �

Proof of Theorem 3.1: It is a special case of Theorem 4.1, where λ = 0. Thus, h(y) is
degenerated to be

h(y) , U ′(W0 − P0 + y)n(T )

and

H(λ, µ;X) = W0 − P0 − (U ′)−1

(
µ

n(T )

)
.

It is easy to see that this theorem holds. �
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Figure 2: Optimal Insurance Indemnity under Ambiguity

This graph displays the optimal insurance indemnity when both the insured and the insurer have
ambiguities. Parameters are W0 = 10, Wn

0 = 10, P0 = 3, η = 0.1, λ = 1, µ = 1, T = 1. Panel
A plots the indemnity when the insured is less ambiguity than the insurer, b1 = 1, b2 = 2; Panel
B plots the indemnity when both the insured and insurer have the same ambiguity, b1 = b2 = 1;
Panel C plots the indemnity when the insured is more ambiguity than the insured, b1 = 1, b2 = 0.5.
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Panel B: b1 = b2
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Panel C: b1 > b2
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