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Abstract

The purpose of this article is to value some life insurance contracts in a stochastic interest rate environment taking into account
the default risk of the underlying insurance company. The participating life insurance contracts considered here can be expressed
as portfolios of barrier options as shown by Grosen and Jgrgensen [J. Risk Insurance 64 (3) (1997) 481-503]. In order to price
these options, the Longstaff and Schwartz [J. Finance 50 (3) (1995) 789—-820] methodology is used with the Collin-Dufresne
and Goldstein [J. Finance 56 (5) (2001) 1929-1957] correction.
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0. Introduction

Life insurance companies offer complex contracts written with the following many covenants: interest rate guar-
antees, bonus and surrender options, equity-linked policies, choice of a reference portfolio, participating policies.
Each particular covenant has a value and is part of the company liabilities. These embedded options should not be
ignored and must be priced. Many life-insurance companies, having neglected them for a long time, increased the
difficulties they faced in the 1990s.
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Most of the recent studies rely on tBeys and de Varenne (1997a, 1991ddel. These authors aim at providing
a fair valuation of liabilities. By this, it is meant that market value is the reference. More precisely, the computed
prices must be arbitrage free. The life insurance contracts are thus considered as purely financial assets traded on
liquid market among perfectly informed investors. This fact is taken as a fundamental assumption in these studies,
and itis the basic hypothesis we make in this article. Note that this principle is in line with the Financial Accounting
Standards Board (FASB) and International Accounting Standard Board (IASB) directives.

Although Briys and de Varenne (1994, 1997a, 199Wuyrk in continuous time, their model is essentially a
single-period one, and furthermore does not take into account the mortality risk. They value the assets and liabilities
of an insurance company which sells only one type of contract. The default can occur only at maturity. Their
framework is of the Merton type, and they can therefore obtain closed-form formulae which permit to adjust the
different parameters involved in a fair contract. Nevertheless, this model can be considered as a prototype in the
valuation of life insurance contract.

Miltersen and Persson (2003)opose a multi-period extension and also provide closed form fornideinello
(2001)analyzes the most sold life insurance contract in Italy. She takes into account mortality and suggests a contract
which offers the choice among different triplets of technical rate, participation level and volatility. Paying each year
a premium, the insured customer gets the guarantee to recover his initial investment accrued at a fixed rate and ca
possibly benefit from a bonus indexed on a reference portfolio. The pricing is achieved under the standard Black
and Scholes model and assuming independence between mortality risk and financial risk.

Tanskanen and Lukkarinen (2003)nsider general participating life insurance contracts. Their contract values
depend on the evolution of a reference portfolio at different dates. These authors incorporate the following features:
minimum interest rate guaranteed each year, right to change each year the reference portfolio, as well as possibility
to surrender each year the contract—giving it a Bermudian aspect. They work with constant interest rates and a
constant volatility.

Because there are various kinds of contracts and modeling framewaorks, the pricing methodologies are diverse
In fact, mortality, a stochastic interest rate environment and stochastic volatilities, for instance, can be taken into
account as well as the right to sell back the contract. Participating policies are also multiple. It must be noted that
closed form solutions are obtained in the simple Black and Scholes sdiingkanen and Lukkarinen (2008e
a numerical procedure to solve their partial differential equation in order to compute the surrender option.

Jargensen (200BndGrosen and Jgrgensen (208Rpw that a life insurance contract with a minimum interest
rate guarantee can be expressed in four terms, the final guarantee (equivalent to a zero-coupon bond), the Europe:
bonus option associated with a percentage of the positive performance of the company’s asset portfolio, if any, a
put option linked to the default risk, and finally a fourth term which is a rebate given to the policyholders in case of
default prior to the maturity date.

In Grosen and Jgrgensen (199Re possibility of an early payment is envisaged. To treat this American-style
contract they use a binomial lattice wherelessen et al. (2001)se a finite difference approacGrosen and
Jargensen (20023ke into account a default barrier of an exponential type. They obtain closed form formulae in the
case of constant interest ratdgrgensen (200Extends this study to the more difficult case of stochastic interest
rates, using a Monte-Carlo approach.

This study is devoted to the valuation of life insurance contracts in the presence of a stochastic term structure
of interest rates, it also takes into account the company’s default risk. We provide an alternative method to trees,
numerical solutions of PDE and Monte-Carlo simulations, schemes usually used to price such contracts. The term
structure of interest rates considered here stems from the cladsiati et al. (1992ramework. Amongst the two
standard choices of zero-coupon volatilities making the instantaneous risk-free rate Markovian — linear volatility
as in the Ho and Lee model or exponential volatility as in the Hull and White model — we take the second one.
Our model is therefore a Vasicek one. Note that we could have considered in our paper a full Hull and White or
generalized Vasicek framework by relying on a purely exogenously specified (by a set of zero-coupons) initial term
structure of interest rates. The extension of our computations to a Ho and Lee choice of zero-coupon volatility is
also straightforward. Our valuation method relies@uilin-Dufresne and Goldstein’s (200a&jticle which is an
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outgrowth ofFortet's (1943)algorithm used by ongstaff and Schwartz (19959 approximate the first passage
time density to a given level by a log-normal process.

Firstly, we give the general setting of our model. Then we detail the adopted methodology, and finally we present
some numerical applications giving the market price of our life insurance contract and we explain how to choose
the parameters leading to a fair value contract.

1. Framework

We want to show how to price a participating life insurance contract with a minimum guaranteed rate in presence
of default risk of the issuing company. We begin with the definition of the contract and the default process, before
concluding with the modeling of the interest rate process.

1.1. Contract and default model

We consider an insurance company with two types of agents: policyholders and shareholders. The policyholders
possess the same unique contract which will be defined precisely in the following. The considered life-insurance
company has no debt and its planning horizon is finite Widts maturity, being also the expiry date of the contract.

Let Ag be the assets initial valué,g = aAg the initial investment by policyholders, arth = (1 — «)Ag is the
initial equity.
The policyholder is guaranteed a fixed interest rate&So, the guaranteed amounfTais a prioriL5. = Lo€s”.
However, when the firm defaults, this amount will be lowered, on the contrary it will be raised if exceptional results
of the company occur. The next step is to express these payments according to the firm’s assets dynamics. We refer
to a continuous time economy with a perfect financial market into which our life insurance company is included.

1.2. Payment at maturity

Let us look at what happens &tif A7 > L%, the company is able to fuffill its commitments, otherwise <
L“"} and it is insolvent. In this case, policyholders receiise and equityholders nothing. Because we assume a
participating policy, when the assets generate value suchithat Lg}/a with ¢ < 1, the policyholder is given
a bonus, say, a contractual part of the surplus, known as the participation coefficient. To sum up, policyholders
receive afl, assuming no prior bankruptcy:

AT if Ar < L?

Lg

LS if L <Ay <-L

O(T) = T T =4T = o
Lg

L§~ + (AT — L%i) if Ay > 7T

In this paragraph we have mimicked thterton (1974)default approach. We can rewrite the payoff in a more
concise form:

OL(T) = L + 8(aAr — LE)T — (LS — Ar)t 1)

The first term is the promised amount, the second term — called “bonus option” — is linked to the participating
clause, the third one is a put option associated with the default risk.

These last payoffs share the same features as usual European options. According to our fundamental hypothesis
and assuming that the assets dynamics follows a geometric Brownian motion it is easy to price them. For more
details and closed form solutions, we refeBidys and de Varenne (1994)
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1.3. Company early default

Now we assume that default can occur prior to the matirifyhe default mechanism we choose is of a structural
type, so we introduce an activating barrier on the firm’s assets. From now on, bankruptcy can occur at any time
beforeT. The contract value depends on the assets price before the expiry of the contract and not only on their price
atT. The barrier is chosen exponential and is denote@ by

The firm pursues its activities untilif:

Vie[0,T[, A, > riLo€ 2B, @)

If it is not so, it is declared bankrupt. Letbe the default time; it is the first time whet} hits the barrierB;,
otherwise stated:

r=inf{r € [0, T]/A; < B:} ()

With A greater than 1, the firm is able, even when going bankrupt, to pay back policyholders their investments
accrued at the guaranteed rateThe residual capital (equal ta  1)Lo €'¢7) can be used to pay bankruptcy costs
or can be distributed to shareholders. The situationl is therefore very favorable to policyholders and regulators.
Theoretically it is a risk free position. On the contrary, in the case whenl, the firm is totally insolvent in the
case of bankruptcy and unable to meet its commitments.

So, policyholders will receive in case of early default:

o= Lo Tz DLede = ming., 1)L )
= = | . = | s
L ALo€sTifA <1 0 '

1.4. Contract value

Using the standard machinery of arbitrage theory in continuous time and deno@tgéyisk-neutral probability
measure, the arbitrage free price of our life insurance contract (hereafter LIC) dtdamébe written as:

VL) = Eple I " OL + 8(adr — L5 — (1§ — Ap) ey + € 1S ming, L] (9)
This contract can be split up into four simpler subcontracts:

V.(1) = GF, + BO, — PO + LR, (6)
whereGF corresponds to the fingl\guarantB@ stands for the “bonus optionPO for the default put on which
policyholders are short, and, at lasR is the rebate paid to policyholders in case of early default. Individually these
four subcontracts can be written as:

o~ T o~ T

GF =Ey[e " 17L8],  BO, =Ejyle /i "% 1218 (@Ar — L§)],

PO = Ej[e” Wt g _p(Ls — Ap)*], (R = Efyle™ % 1,7 min(x, 1)L¢] @)

Note that closed form formulae are available with constant interest rate&(esen and Jgrgensen, 2D0Qur
aim in this article is to value our LIC in a reasonably sound stochastic interest rate environment. Of course this
problem is rather complex and will lead us to semi-closed formulae. Let us now turn back to the term structure of
interest rate.



C. Bernard et al. / Insurance: Mathematics and Economics 36 (2005) 499-516 503

1.5. Assets dynamics and interest rate modeling

The most efficient way to price options in a stochastic interest rates environment is to use the changeafeum
technique and to choose an ad hoc zero-coupon bond as ne@raiten So, forward-neutral probability measures
technically play a key role. We need to know the it T-forward-neutral assets dynamics as well as the dynamics of a
default free zero-coupon bond with expiry datéNe denote byP(z, T) its price at current timé We assume that
the assets price follows a geometric Brownian motion in the risk-neutral world and we use a onkléadtoet al.
(1992)interest rate model with a deterministic volatility for the T-zero-coupon bond of an exponential type (this is
the Hull and White choice). With > 0 anda > 0, the volatility structure can be written as follows:

op(t,T) = 2(1 _ gy (8)

In this case, the dynamics of the instantaneous interest tatder the forward-neutral probability;Qan be
written like:

dre = a(6; — r;) de + vdZ T (1) (9)

whered, = 6 — (V2/a?)(1 — e T —1),
Under the risk-neutral probability measure Q, the assets valy@nd the zero-coupon bond price with expiry
dateT, P(t, T), follow the stochastic diffusions

A b+ 0 dz90) (10)
Ay
and
dP(, T) o
PUT) redt —op(t, T)dZ (1)

whereZ%(r) and Z?(t) are Q-standard Brownian motions. Lebe the correlation coefficient between these two
Brownian movements @ dz2 = p dr).

Let us now consider a Brownian moticmg independent fronﬂ? (such that (ZlQ de(,2 = 0); the Brownian
motion Z® can be expressed as

dZ(r) = pdZ2(1) + /1 — p?dZ3(r)
In this way we decorrelate the interest rate risk from the firm assets risk. The assets dy@ittosn writes:
dA,
o= d + op dZ2(r) + 0/ 1 — p2dZ3(r) (11)
Let us now denote by Rthe T-forward-neutral measure. It is defined through its Radon-Nikodym derivative

dQr _ o [ o120 ~(1/2) [ 3.7l

dQ

From Girsanov theorem the proc@%T defined by (Z?T = dZ(f + op(t, T) dt is a Qp-Brownian motion. The
processZ?T is then built such thaZlQT andZZQT are Q-non correlated standard Brownian motions. Undertige
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pricesP(t, T) and A, follow the stochastic differential equations

drP(t, T) 2 Qr
W = (r, +(7P(t, T)) dt UP(t, T) le
and
dA
A_' = (rr — opop(t, T)) dt + o(pdZY + /1 — p2dz3") (12)
t

After integration, one obtains

t t
;= i exp / (op(u, 1) + po) dZ(l?T(u) + / oy/1— p? dZST(M)
P(0, 1) 0 0

: o2 o2
= [ (—op(u,T)(op(u,r)+po)+%) du) (13)

This formula will be useful to simulate the proce$sas well as to study the moments of i(); we shall see
next that it is a prerequisite to solve our problem.

1.6. The valuation

We now present the valuation of our LIC under the setting defined above. For the sake of simplicity, we set
the current time to zera & 0). Using the fact that the relative prices are martingale undef-fioeward-neutral
equivalent martingale measure, we can rewrite fornfbljaccording to:

VL (0) = P(0, T)Eq,[(L% + 8(aAr — L3)T — (L5 — A7) ) esr + gl s min(x, 1)L 1,-7]

Using the relatiorl,>7 = 1 — 1,7, the expression of the subcontractg7i)lead in a very simple way in the
T-forward-neutral-universe to:

Vi(0) = P(0, T)(GF+ BO — PO+ LR) (14)
where

GF= L}(1— Ey), BO = a8(E7 — E2) — SL5(Es — E3),
PO= L§(E9 — E4) — E10+ Es, LR = min(x, 1)Lo Ee (15)
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and where we introduce the following quantities

E, =Qr [’r < T} FEg = IEQT [ef.;r Tsdse-ryrnT<T]
Ey =Eq., ATI[{AT>£§- , T<T}] E; =Eq, [AT]}.AT>%HI]
E3=QT{AT>%QT‘7T<T] E8=QT[AT>%QI}

Ey= QT[AT < L% , T < T] Ey = QT{AT < Lf}]

Es = IEQT [AT]]'AT<L,‘}. ]17-<T] Elg = ]EQT [ATHAT<L§]

(16)

(16)

In the next section, we show how to compute these expressions. The ones in which the defauttdeaaot
intervene lead to closed form formulae. For the others, as far as we know, closed form formulae are not available,
hence, in order to compute them, we use an approximation of the distributiofiloi is the object of the following
paragraph and constitutes the core of our pricing methodology.

2. Valuation methodology

To price our LIC we need to compute each expectatipm (16). We have to know the law of the default time
t—first passage time of the lognormal process of the aggedsthe exponential barrier, given (8).

Longstaff and Schwartz (1996seFortet’s result (1943p approximate the law afin a similar problem to ours:
the pricing of defaultable bonds and defaultable floating rate notes. Howevéonigstaff and Schwartz (1995)
approximation is not satisfactory and mathematically not valiollin-Dufresne and Goldstein (200byought a
correction to the previous approximation which validates the method for problems of the kind we encounter. We call
this corrected method the extended Fortet's method. It is the key solution to the pricing of our LIC in this article;
let us now explain this method.

Firstly, we adopt the following conventiof}. = In(x;) = In(A;) — r,t. For this process, the default barrier be-
comesh = In(ALp); we assume it is belovg, the initial value of the process under study. Besides, it can be shown
that the procesk obeys under @ the following stochastic differential equation (applying'stlemma to Eq(12)):

2
d, = (r, —rg— % — opoplt, T)) dr + op leQT +oy/1—p2? dZST

So, we have to study the first passage timg @ the constant levéd, put more explicitly
r=inf{r € [0, T1/Il; < h}
In order to compute the expectations in form(d), we choose to approximate the lawwof

Let p; be the density of the random variablat timet under thel-forward-neutral measure;Qwhen the interest
rate has value, andl, = h. We will calculate it as a piecewise constant function. The approximation consists of a
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time and interest rate discretization. The intervalf[Dis subdivided into:7 subperiods of length, = T/nr. The
interest rate is subdivided betwegg, andrmax into n,- intervals with the same size = (rmax — rmin)/n-- At last,
let us define by; = j§; andr; = rmin + i8, the discretized values of time and interest rate.

We give a recursive approximation of the densityrdads a piecewise constant function on f; 1] when the
interest rate is betweenandr;;1. We denote this density by

plri,tj)), j=0,....,nr =1, i=0,...,n,.
Next, we need to compute the probability of the evert[z;, ;1] with r € [r;, ri41]; it expresses as

q(l’ ]) = Sl‘arp(ri? I])

Let f(l;, 1, tlly = a, ry = r, s) be the conditional law ofl{, r;) given{l;, = a, ry = r}.
Define respectively, ¥ andg by:

h
(P(rt,t) = / f(l,,rt,t|lo, ro, O)dlt,
—00

h
WMWmﬂz/mf@me=hmJNk g(rs, s) = p<(ls = h, rs, sllo, ro, 0)
—0o0

It can be shown (for further details, see Collin-Dufresne and Goldstein) that the quattiti@snay be computed
by a recursive algorithm. First, the quantitig 0) are computed for eveiy

q(i, 0) = @(ri. 10)

from them the quantitieg(i, j) for j > 2 are recursively obtained:

j—1 n,

q(i, )) = (i ;) = Y > qlu, V)@ (i, 1)lru, 1) 7

v=0u=0

To calculatey(i, j), the expressions(r,, r) and¥ (r,, t|rs, s) are needed. Since the procedsaadr, are Gaussian,
the conditional law of; given theo-tribe generated by the information available at ts@end givery;, is Gaussian,
with meanu(r,, Iy, rs) and variancex2(r,, Iy, rs). The computations and results are givedjpendix A.las well
as the centered moments of order 1 and 2 of the procészedr;.

Let us denote, as usual, Bythe cumulative distribution function of the standard normal law. Using the previous
Gaussian conditional law and the Bayes’ rule we obtain

h _I’L(rhlo’ro)
sz(rtleVFO) ’

h— u(re, Iy = h,rg)
RV, 22(}’;, lS = h, r_y)

where we have an explicit formula for the transition dengijtyf r (which is a Gaussian process):

D(ry, 1) = fr(re, tllo, ro, O)N<

U(ry, tlrs, s) = fr(re, tlly = h, 1y, S)N<

Pl tlls = . ry. 5) = ——= e (=m0

2mv
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357 10
—— Empirical Density
nr=1D and nT=50

3| .~.- n=50 and n =200 in,
2.5+

2.
1.5r

1+
0.5r

0 1 2 3 4 5 6 7 8 9 10
Fig. 1. Empirical and extended Fortet’s approximate density.

wherem = E[r,|rs] andv = Var[r;|r,], respectively, stand for the conditional moments,afivenr,. They are also
provided inAppendix A.1

To sum up, we have now, with formu{&7)the possibility to compute thgi, j) terms, which give us the density
of  we were looking for. Now we are equipped to obtain our expectations.

Fig. lillustrates the fact that this corrected method gives an approximated dgnsity *; ¢(i, j) which adjusts
satisfactorily the empirical density ef(obtained here by Monte-Carlo simulation). The extended Fortet’'s method
is, of course, more time-consuming than the ordinary Fortet’s method, because of the double discretization; however
it is far less time consuming than Monte-Carlo simulations.

2.1. The quasi-closed form formula for the LIC

At present, we have to apply our method to compute the expectatiqas)im order to getV; (0). Each term
involving 7 is computed using the extended Fortet’s method.

For this goal, we need to know precisely the momentg(ttie formulae ir(16), which are expressed as functions
of A, can indeed be rewritten as functiond pédnd the moments of and also the conditional momentsipgiven
r¢. These calculations are providedAppendix A.1

Let us begin with the computation &f;. From its definition, it can be written in the following integral form:

T p+oo
Qr[t<T] = / / p-(ls = h, rs, s|lo, ro, 0) dry ds
0 J-oo

We then discretize according to time and rate and replace the exact denseity by its approximation(i, j):
nr np
E1=Y_Y q(.j)

j=0i=0

We also detail the computation &b, the other approximates; will be obtained in a similar manner.
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Ez = Eq, [AT el ergrﬂ{AT e*’gT>Lo/a,r<T}] = Eq, [XT ergTﬂXT>Lo/aﬂT<T]
= €T Eq,[€" 11> n(Lo/a) Ie<7]

By conditioning (being here the key tool) we obtain:

T 400
E; = e'ngo dS/ dry g(rs, s)Eq, [elTﬂ{lT>ln(Lo/a)}|ls =h,re,s,1= S]
—o0

In this last formula, the expectation only concefpsBut we do not know the density éf, we only know
the conditional law of7 givenry, and the transition density of an Ornstein—Uhlenbeck process, denotgd by
Therefore:

E; = €T Td +<>oo| +<>ool Eo, |71 F
2= s s 8(rs, 5) rr 17 (rr) EQ, {r>In(Lojay 77> Fs
0 —00 —0o0

Tr)e law ofl7 conditional onF; and giverrr is Gaussian ; its first two centered momentsiare = wu(rr, Is, rs)
andEﬁT = X%(rp, 1, ry).
Let X be the Gaussian random variaVgn, o2), we define:

B1(m;0;a) = E[e*lex. ] = exp(m + ?) N(M)

o
The expectatiorE, can be rewritten as:

o

— T r oo oo ~ & Lo
Er = 0 ds drsg(rm S) drr fr(rTlrss s, ls)¢1 Ms, T Z:s,Ty
—00 —00

Then, the extended Fortet’s approximation foris:
nr ny ny LO
E2 = ergT Z Z Z (Srfr(rk|riv tjv ltj)d>1 (:CLI.,‘,T; Et_j,T; ?) Q(lv ])

j=0i=0 k=0

With the same scheme, we give the formulae for the otBegiven in(16). It can be shown that

ey fur ()
Eg=¢¥ Z Z > 8 frlridrin ti )N T q(i. j)
j=0 i=0 k=0 t;,T

and

. nr ny ny In(Lo)—thj,T .
Eam T Y33 5 ol 1y, )N S E, )
tj,T

j=0 i=0 k=0
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For the computation of’5, we define

2 In _ _ 2
Do(m: 01 @) = B[eXT o] = exp(m N %> N(M)
o
whereX is a Gaussian r.W(m, o2).
We then obtain

E5 - eng Z Srfr(rk|riv tj7 ltj)¢2(:&lj,T; 2[/,T; LO)Q(lv ])
Jiik

and

nr n,

. tT ud 1T
Eg = Zzergt/EQT |:€// ' u|rf_i =Ti, tf’l’j = h] q(i. J)

j=0i=0

To computeEs, we use the fact that underTthT r, du follows a Gaussian law whose parameters are given at
the end ofAppendix A.2 Finally Eg is obtained thanks to a classical property of Gaussian random variab¥es: if
follows AV{m, 02) thenE[e?] = e"+”/2,

In expectations7, Eg, Eg, and E1g, the random time does not intervene. Furthermore the random variable
xr is lognormal with moments Mand Vr (computed iPAppendix A.J). Hence, explicit formulae for the last four
expectations can be obtained.

Indeed, applying the properties associated with the funcignand ®», we obtain

L
Br= o gy Vs ) | e (M)
T

Eo :N(“"L")"M ) Eip= €T ®y(M; /Vor; Lo

e (Mr; /5 Lo) 18)

To sum up, in order to compute the differdryt we need to knowd1, @, f,, and the different moments given

above which are made explicit Apppendix A.], as well as the probabilitieg, j). To obtain accurate results, it is
sufficient to use a grid with a thin mesh, which can be done witlandr, large enough.

3. Numerical analysis

In this section we make a numerical analysis on our LIC. Two parameters will happen to play a key role: the
guaranteed rate, and the participating coefficieat

The parameters, ands cannot be fixed arbitrarily. The guaranteed rate must be neither too high (bankruptcy
risk would be too high in the case of falling interest rates), nor too low (unfavorable contract to policyholders).
Besides, it cannot go beyond a legal threshold limit. In France, this threshold is typically around 2.75%. As far
as the participating level is concerned, it is calculated such that LICs be fair to both sides. The participating level
necessarily varies contrary to the guaranteed rate: the higher the former the lower the latter and vice versa.

There are infinitely many couples, ¢,) leading to a fair contract. These parameters depend, of course, on the
company’s investment policy. That is to say, in our model, they depend on the assets velatiliyon the default
barrier level.. However, all these contracts are not acceptabtayst be between 0 and 1. Besides, the participating
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Table 1

Data

Ag a v 0 ro P o T A o

100 0.4 0.008 0.06 0.03 -0.02 0.1 10 0.8 0.85
Table 2

Contract and subcontracts values

Extended Fortet BO GF PO LR Contract Time (min)
nr = 200 n, =50 34.428 99.226 0.119 10.160 84.990 2

nr =500 n, = 50 34.428 99.197 0.115 10.193 84.9995 10

coefficient must obey legal constraints ; for examplaust be greater than 85% in France Bifiys and de Varenne,
1997H).

As a first step, we recapitulate the values we choose for the parameters involved in our study. We then turn to
the numerical valuation of our LICs and make a comparison of the extended Fortet's method and Monte-Carlo
simulations. We also show how to calculate the participating level. Finally, we conclude this section by a sensitivity
analysis of the contact price to the assets volatility.

3.1. Data

We give inTable 1the chosen parameters values. Some will be changed after, in particular vatadititybarrier
level i.

Recall thatAg stands for the initial assets value of our companyy, 6 andrg determine the instantaneous
interest rate process, ampds the correlation coefficient between the assets process and the instantaneous interest
rate process. The small value torset to 10%, corresponds to a standard investment (approximately half in stocks
and half in bonds) by the considered life insurance company. Finally, the contract mafarsgt equal to 10 years,
ande is the initial proportion of investment by the insured on the total liabilities of the firm.

3.2. Numerical results

We now examine in the following the numerical results we could obtain for the contract value and the fair
participating level.

3.2.1. Contract valuation

Tables 2 and display the LIC contract and subcontracts numerical estimations, done with the extended Fortet and
Monte-Carlo methods, respectively, using the parameters defined in the previous subsection angl talit6§o
andé = 90.23%. Five million sample paths have been used in Monte-Carlo simulations for each valuation.

The first remark we must emphasize on is that the extended Fortet method is by far faster than the Monte-Carlo
method. Ten minutes of computation time is not instantaneous (as is the case with a closed form formula) but is
extremely efficient in the numerical valuation of a complex contract submitted to both interest rate risk and default
risk.

Table 3

Contract and subcontracts values

Monte-Carlo BO GF PO LR Contract Time
Step= 1/12 34.10 1006 0.41 887 84.6 20 min
Step= 1/52 34.14 987 0.38 957 84.7 1h 30min

Step= 1/365 34.20 9P?2 0.29 1016 84.8 1 day
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Fig. 2. Contract value (w.r.8).

Furthermore, we observe rather rapidly a convergence for the contract and subcontracts prices when using the
extended Fortet’'s method, while Monte-Carlo converges poorly for some subcontracts such that the default put PO.
Hence to obtain a sufficient precision with Monte-Carlo, it would be necessary to launch simulations lasting many
days, which is unacceptable for practical use.

Our numerical experiments show, as confirmed by Monte-Carlo simulations, that the prices obtained with the
extended Fortet's method are reliable, and in a quite short computation time. The contract fair value is 85 and the
extended Fortet's method provides an accuracy of three digits in 10 min. On the contrary, the Monte-Carlo method
is very slow in converging: indeed our path-dependent problem requires a very fine discretization (many time steps)
for each — amongst many — sample path. The implementation of both methods has been done with an extensive use
of Matlab vectorization tools, on a 3 GHz computer.

3.2.2. Computation of the participating level

We are looking for participating levels fair to both policyholders and the company. This will be done under the
following equilibrium condition: a contract is said to be fair if the policyholders’ initial investnigynt aAg is
equal to the total value of subscribed contracts.

We present irFigs. 2 and 3he contract value as a function &fand the guaranteed ratg. Note that the
level 85 corresponds to thig value.Fig. 2 is obtained with a guaranteed rate set at 2.6%. The higher the par-
ticipating level, the higher the contract value. Let us note that only one valdecofresponds to a fair value
contract, which is the initial investmeidty. Fig. 3 is obtained with a participating level set éo= 0.9023, and
represents the contract value as a function of the guaranteed rate. Here again, only oneryaiesdsfto a fair
contract.

Now, let us explain the employed procedure. If one wants to determine the participating coefficient with a given
guaranteed rate, one has to compute:

B P — GF+PO—LR
«(E7 — E2) — L§(Eg — E3)

The calculation of the guaranteed rate given the participating coefficient is more difficult. One has to use a root
searching algorithm with the constraint that the contract initial value is equal.to
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3.3. Sensitivity to volatility

We examine now the sensitivity of the participating le¥el and guaranteed ratg — to the assets volatility.
These sensitivities are displayedHrigs. 4 and 5

Fig. 4shows that the weaker the participating level is, the more itis necessary to compensate with a big guaranteec
interest rate. On the graph the curves are presented in descending order with re&pect to

On the opposite, we remark ifig. S5that (fair participating curves are presented in descending order with respect
to rg) a low guaranteed rate must be compensated by a high level of the participating coefficient.

Let us examine now the impact of volatility. It is clear frdfig. 5 that the guaranteed rate begins to fall
before moving up as volatility increases. When the volatitg low, the default risk is negligible, a rising volatility
corresponds to arising return. Given a fixed participating coeffidighe guaranteed rate must necessarily decrease
to preserve a fair contract. Shouldremain constant, the contract would be more and more advantageous when

0.08
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0.02 fail
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Fig. 4. r, as a function ob.
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o increases. On the contrary, wheris above 10%, the default risk becomes important and the probability for
policyholders to get back their guaranteed investment diminishes; it is then necessary to compensate with a higher
guaranteed rate.

Atlast, let us analyzEig. 5. Here again we have a similar behavior. With a fixed guaranteed rate, the participating
level begins to decrease before rising, as long as volatility increases. When the volatility is low, in other words,
when we can consider that no default risk exists, a volatility rise implies a better return; in order to limit the
policyholders advantage, the participating level must decrease. On the contrary, when volatility is high, default
risk is important, and necessarily the participating level has to be raised up, given the guaranteed rate, to preserve
fairness (policyholders bearing the risk not to recover their initial investment).

4. Conclusion

In this article we have proposed a new method to value typical participating life insurance contracts, with
minimum guaranteed rate, in the presence of default risk, and in a stochastic interest rate environment. We have
determined the fair participating level, which is a delicate and important point for a life insurance company. We
have also analyzed the sensitivity of the main parameters to volatility.

The suggested method reliesBortet’s equation (1943)iving the first passage time of the assets process to the
default barrier, and consequently paving the way for computing diverse exotic options embedded in the contract
involving this random time. This method has been used in Finance for the first timengstaff and Schwartz
(1995)then byCollin-Dufresne and Goldstein (200T)hese last authors have amended the Longstaff and Schwartz
approach extending it in a rigorous way to two dimensional continuous Markov processes. It is this method we used
under the name of extended Fortet’s method.

Confronting with Monte-Carlo method, we have proved that the extended Fortet's method performs very well
to value typical life insurance contracts in a rather general context. More than that, the extended Fortet’s method
permits to value these contracts in a very fast computing-time, which constitutes certainly a convincing argument
for practioners.

Because the fair participating coefficient asks for a root searching algorithm, it is important to have a rapid and
efficient method to value LICs. Once again one can perceive the advantage of the proposed method with respect to
Monte-Carlo simulations routinely used.
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Appendix A
A.1l. Moments and conditional momentsyef

Recall that the procesgis defined by Ing,) = In(A,) — r,t. For a fixedt, x, is a log-normal random variable
described by its two first centered moments-ME[In(x,)] and V; = Var[ln x,] that can easily be computed:

t 2 _ 2
M; =In (P(AO(,)t)) —+—/0 (—ap(u, T)(op(u, t) + po) + % _ rg> du

and
t
v, = / (0% + 02(u. 1) + 2p00p(u. 1)) du
0

Let us give the moments of Ig() for an exponential volatility structure
2 2 2

Ao P2 V2 pov o _oa v folea) o
M, = In — ==+ += t——e 2 — 4 ) el
' (P@0>+4ﬁ <m2+a T )T g3 23t 2

2 2
v POV _ar |V —a(T+)
- <—3 + —2> e + ﬁ e s

a a

2 2 2
v4+apo _, v —2at_3l_2p0”+<02+2p0‘)+‘) )t
a

a?

e - —€e
a3 2a3 2a3 a?

We need to compute the covariance betweeg,Jrgnd In(y,):

V[=2V

C(s, 1) = /:N(oz + po(op(u,t) + op(u, s)) + op(u, s)op(u, t)) du

In the case of the Hull and White volatility, we obtain (with< 7):

2 2 2 2
_ pov v 5  2p0vV v pov v s ooV v —at
Con=- (T +i)+ (e g (T i) e (T k) e
(P P gt Y gratery
a? = 248 2a3

Besides, the conditional law of I() given In(x;) is Gaussian with mean(s, ) and variancé (s, ). The conditional
moments of Ing,) are

C(s, 1) . B C(s, 1)?
V. (In(xs) — M), V(s,t) =V, — V.

(s, 1) = M; + (19)

A.2. Moments of the processesand/;

We work under the forward-neutral measure. The instantaneous interessrateOrnstein—Uhlenbeck process.
We compute its moments and thosd aksociated with the assets process. Deffinby:

B = (1— &)
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r is a Gaussian process, therefore it is possible (after integré@ipngo compute its two centered conditional
moments with respect to the trillégenerated by:

2
E[r,|Fu] = € p, + (9 - —> Bu(t — u) + eI By (t — u)

and
Varlr,| F,] = v2Bou(t — u)
and fors < ¢
Cov(rs, rilFu) = o *“<S+f>(e2m &) =12 e =) By, (s — u)
Let us now examine the moments of the prodgssIn(x;) = In(A;) — r,t obeying the SDE
a® Qr 2 47Qr
di, = r,—rg—7—o,0vBa(T—t) dt +opdZy" +o0y/1— p“dZ; (20)

whereZ(fT andZZQT are two independent Brownian under fhidorward neutral measure.

We integraté,; it can be expressed in termsnp,fZ?T andeQT. | is a Gaussian process. After some computations
we obtain:

2
1%
Ell|F] =1, — <rg +5+ i -0+ — ) (t —u)— —“(T—f)BZQ(; — u)
1)2 V
+ (ru —0+ 5+ el P gl ‘)) Ba(t — u),
a a a

2 2
Var[l,| F.] = (o + o+ 2@> (t —u) — ( + ﬂ) Ba(t — u) + :732[,@ — ).

If s <t 2 L 2o )
Covll, bl Fu) = — —A=) Boy(s — u) + (a +—+ a2> (s — u)

a
A.3. Covariances betweénandr,
The processels andr, are correlated througﬁ?T and have the conditional covariance
l)z 1)2
Cov(ly, r|Fy) = —;Bza(t —u)+ <; + pov) B.(t —u)
Besides, we need

2
CVrdT) o i mD, SR 1) = Va5 — Sl )

) ls’ s) = E l s B
/‘(/(rt r, ) [ T|‘7:] + Var[rtlfs] Var[rtlfv]
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Finally, we also need the following results to compaie

T 1)2 1)2 V2
E |:/ Ts d5|-7:ui| = (ru = 0)Buo(T —u) + —Bu(T — M)Z +—= e “Boy(T —u) + (9 - _2> (T —u)
" a a a
and

T 2
var |:/ Fy ds|fu] = v2 (B2o(T —u) + T — u — 2Bo(T — u))

a
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