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Abstract

This paper develops a general valuation approach to price barrier options when the term

structure of interest rates is stochastic. These products’ barriers may be constant or stochastic, in

particular we examine the case of discounted barriers (at the instantaneous interest rate). So, in

practice, we extend Rubinstein and Reiner [1991. Breaking down the barriers. Risk 4(8), 28–35],

who give closed-form formulas for pricing barrier options in a Black and Scholes context, to the

case of a Vasicek modeling of interest rates. We are therefore in the situation of pricing barrier

options semi-explicitly or explicitly (depending on the shape of the barrier) with stochastic Vasicek

interest rates. The model is illustrated with a specific contract, an up and out call with rebate, hence

a typical barrier option. This example is merely here to show how any standard barrier option can

be priced and its Greeks be obtained in such a context. The validity of the approximation is

analyzed and the sensitivity to the barrier level and to discretization schemes are also derived.
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1. Introduction

In this article, we focus our analysis on the pricing of financial contracts with
barriers in a stochastic interest rate environment. The applications of barrier options
are multiple and go far beyond the study of derivative products. Barrier options are
building blocks of diverse fields such as investment choice theory, the study of the
capital structure of the firm (see the standard reference of Black and Cox, 1976 for
instance, or the interesting contribution of Franc-ois and Morellec, 2004), or life
insurance (see for instance Grosen and Jørgensen, 2002). Recall that these contracts
payoffs depend on whether or not the price of their underlying assets cross a barrier
from above or from below. They are the essential part of the standard structured
products that are guaranteeing the maximum of a capital and the performance of a
financial index.

Barrier options have been studied in great detail for a long time. Under the
assumption of a unique and constant interest rate, closed-form solutions were given
by Merton (1974) for down and out calls, then by Rubinstein and Reiner (1991) for
vanilla barrier options. Other contributions include the works of Geman and Yor
(1996) and Pelsser (2000) who priced double barrier options, and the innovative
article of Chesney et al. (1997) who introduced Parisian barrier options. The payoff
of the latter contracts depends on the time spent above or below the barrier. Later
on, Linetsky (1999) pioneered step options. In all these papers, the standard Black
and Scholes framework is the starting point and in particular the risk-free interest
rate is assumed constant. For short term contracts, a constant term structure of
interest rates can be considered reasonable; yet, for medium or long term notes this
assumption cannot hold.

Lots of structured products currently traded on the American Stock Exchange
involve barrier options and some of them are long term products. Indeed 25.7% of
equity-linked notes1 have their payments driven by a triggered event based on the
trajectory of the underlying stock. These equity-linked securities with embedded
barrier options represent a total volume of $1,109,518,000. The three bigger issuers
in the US are: Wachovia Corporation (Enhanced Yield Securities), Morgan Stanley
(HITS: High Income Trigger Securities), Citigroup Funding Inc. (EKLS: Equity
Linked Securities). The maturities of these products can be very long in the real
market. A lot of barrier equity-linked securities (such as described above) are 1-year
contracts. Yet, a reasonable amount of long term barrier index linked notes is
currently traded on the American Stock Exchange. Typical medium-index barrier
index linked notes are issued by Lehman Brothers, and are linked to the S&P 500
Index, Dow Jones STOXX 50 Index, or Russell 2000 Index (their maturities are
ranging between 4 and 5 years). Medium-term notes are also existing and popular
products in Europe: we can take for example the famous equity winners, or twin
wins, which are basically linear combinations of in and out barrier options with a
maturity of 5 years. For these products, it is fully relevant to take into account the
1Source: www.amex.com, November 2006.

http:www.amex.com
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stochasticity of interest rates. More on structured products can also be found in
Wystup (2006).

The study of exotic barrier options in the context of stochastic interest rates is a
rather difficult problem. It is usually solved in the financial industry by means of
Monte-Carlo simulations or partial differential equations. This article takes into
account a stochastic term structure of interest rates to price barrier options by means
of closed or semi-closed form formulas in continuous time. When a particular type of
barrier is chosen, as in Briys and de Varenne (1997) or Kraft (2004), closed form
formulas can be obtained. Here we suggest a general methodology adapted from
Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein (2001). To do so,
our framework considers a type of Markovian approximation due to Fortet (1943)
and used by Longstaff and Schwartz (1995) to value risky debt. Collin-Dufresne and
Goldstein (2001) generalized Fortet’s approximation to the case of two-dimensional
Markov processes. We use their extension to price exotic barrier options. In the
actuarial field, Bernard et al. (2005) priced successfully life insurance contracts
owning many covenants in a similar stochastic context. Our paper goes beyond this
article to show how the extended Fortet method can be used in the finance realm for
barrier options. Moreover we show how the sensitivities of barrier options can easily
be obtained since the convergence of our method is much smoother than classical
numerical methods (Monte-Carlo simulations, trees algorithms, numerical schemes
for partial differential equations).

This article is organized as follows. In the first section, we show how standard
barrier options can be priced with semi-closed-form formulas, when the interest rate
process is stochastic and of the Vasicek type. This section is therefore the direct
extension of the work of Rubinstein and Reiner (1991) to a setting with stochastic
interest rates. The second section illustrates our approach with a particular exotic
contract, the shark option (a typical example of medium-term note recently issued in
Europe), which is in fact a barrier option with rebate. This shark option is used for
the sake of illustration; we could have of course chosen an other medium-term
product for the same purposes. This section also develops a subsetting where it is
possible to reduce the semi-closed form formulas to closed-form formulas, while
keeping the randomness of the underlying interest rate process. The last section
applies our results in the context of a numerical analysis.
2. Standard barrier options in a Vasicek model

Let us start by considering a financial market with a primary asset, say a stock S,
on which a barrier option is written. The underlying asset price is assumed to follow
a geometric Brownian motion. The interest rate model is a Vasicek one, in particular
the instantaneous interest rate r enjoys the Markovian property. The uncertainty is
modeled by a filtered space ðO;F ; fF tgtX0;PÞ where O is the usual fundamental
space, fF tgtX0 is the filtration generated by the Brownian motions, and P is the
historical probability measure. Trading takes place continuously and the prices of all
assets follow correlated diffusions. In particular, the interest rate process is
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correlated to the stock process, or put differently, the economy is driven by two
correlated Brownian motions. The market is complete and frictionless, and Q

denotes the risk-neutral probability.
Because standard barrier options can be up or down, in or out, call or put options,

there are eight types of such options. For the sake of brevity, we will only price in
this section call options (the put option formulas can be obtained straightforwardly
from parity relationships), that is to say up and out, up and in, down and out, and
down and in barrier call options.

Denoting by T the maturity of the options, by K their strike, and by H their barrier
level, one can write the following arbitrage-free pricing formulas for the up and out,
and up and in call options:

Cuo ¼ EQ e
�
R T

0
rs ds
ðST � KÞþ1SmaxpH

� �
;

Cui ¼ EQ e
�
R T

0
rs ds
ðST � KÞþ1Smax4H

� �
:

8>>><>>>: (1)

As concerns the down and out, and down and in calls, they admit the following
valuation formulas:

Cdo ¼ EQ e
�
R T

0
rs ds
ðST � KÞþ1SminXH

� �
;

Cdi ¼ EQ e
�
R T

0
rs ds
ðST � KÞþ1SminoH

� �
:

8>>><>>>: (2)

The goal of this section will be to show how the formulas in (1) and (2) can be
priced in semi-closed form.

2.1. Pricing framework

We will need in the coming developments to use the forward-neutral dynamics of
the stock, of the default-free zero-coupons and of the stock expressed in units of
default-free zero-coupon. The dynamics of the default-free zero-coupons Pðt;TÞ
classically write, in the historical world, as

dPðt;TÞ

Pðt;TÞ
¼ lðt;TÞdt� sPðt;TÞdZ1ðtÞ,

where lðt;TÞ is their expected return, sPðt;TÞ their volatility, and Z1 a standard
Brownian motion under P. In this article, we assume that sPðt;TÞ is deterministic.

The option’s underlying price at time t; denoted by St, is modeled by a geometric
Brownian motion:

dSt

St

¼ mdtþ sdZ2ðtÞ,

where Z2 is a standard Brownian motion correlated with Z1: we define the
correlation coefficient r by dZ1 dZ2 ¼ rdt. The instantaneous expected return m
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could be any square-integrable adapted process. This will not intervene in the
following because we are only interested in pricing under no arbitrage in this
paper.

These dynamics are given in the historical universe. Using standard results from
risk-neutral analysis, we know that there exists a unique probability measure Q

under which the discounted price of securities are martingales. After decorrelating
the above Brownian motions, we can write under Q:

dPðt;TÞ

Pðt;TÞ
¼ rt dt� sPðt;TÞd bZ1ðtÞ

which is standard in this context, see Björk (2004), and for the underlying’s price:

dSt

St

¼ rt dtþ s rd bZ1ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
d bZ2ðtÞ

� �
,

where bZ1 and bZ2 are now two uncorrelated Q-Brownian motions.
Using Itō’s lemma, we can express the risk-neutral dynamics of St and Pðt;TÞ as

St ¼ S0 exp

Z t

0

ru du�
1

2
s2tþ

Z t

0

rsd bZ1ðuÞ þ

Z t

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
d bZ2ðuÞ

� �
(3)

and

Pðt;TÞ ¼ Pð0;TÞ exp

Z t

0

ru du�
1

2

Z t

0

s2Pðu;TÞdu�

Z t

0

sPðu;TÞd bZ1ðuÞ

� �
. (4)

We now aim at writing the dynamics of S in the T-forward-neutral universe.
This universe is associated with the couple ðQT ;Pðt;TÞÞ (i.e. measure, numéraire).
First, we start using the martingale property of the relative price St=Pðt;TÞ,
which reads

St

Pðt;TÞ
¼

S0

Pð0;TÞ
exp

Z t

0

ðsPðu;TÞ þ rsÞdZT
1 ðuÞ þ

Z t

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dZT

2 ðuÞ

�
1

2

Z t

0

ððsPðu;TÞ þ rÞ2 þ s2ð1� r2ÞÞdu

0BBB@
1CCCA

(5)

and we readily set

Pðt;TÞ ¼
Pð0;TÞ

Pð0; tÞ
exp

�

Z t

0

ðsPðu;TÞ � sPðu; tÞÞdZT
1 ðuÞ

þ
1

2

Z t

0

ðsPðu;TÞ � sPðu; tÞÞ
2 du

0BBB@
1CCCA,

where ZT
1 and ZT

2 are two uncorrelated QT -Brownian motions, defined by the two
following relationships: dZT

1 ðtÞ ¼ d bZ1ðtÞ þ sPðt;TÞdt and dZT
2 ðtÞ ¼ d bZ2ðtÞ.
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Finally, we can obtain the forward-neutral expression of St that is going to be used
in the remainder of this paper:

St ¼
S0

Pð0; tÞ
exp

Z t

0

�sPðu;TÞðsPðu; tÞ þ rsÞ þ
s2Pðu; tÞ � s2

2

� �
du

þ

Z t

0

ðsPðu; tÞ þ rsÞdZT
1 ðuÞ þ

Z t

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dZT

2 ðuÞ

0BBB@
1CCCA (6)

or equivalently

lnðStÞ ¼ ln
S0

Pð0; tÞ

� �
þ

Z t

0

�sPðu;TÞðsPðu; tÞ þ rsÞ þ
s2Pðu; tÞ � s2

2

� �
du

þ

Z t

0

ðsPðu; tÞ þ rsÞdZT
1 ðuÞ þ

Z t

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dZT

2 ðuÞ

0BBB@
1CCCA.

Hence, under QT , the underlying price is lognormal, and lnðSÞ is a Gaussian
process. Denoting it by l, we can also remark that

dlt ¼ rt �
s2

2
� srsPðt;TÞ

� �
dtþ srdZT

1 ðtÞ þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dZT

2 ðtÞ. (7)

We will also need the following moments: Mt, Vt and Covðv; tÞ, vpt, which,
respectively, denote the mean, variance and auto-covariance of the underlying. Their
generic expressions are

Mt ¼ ln
S0

Pð0; tÞ

� �
þ

Z t

0

�sPðu;TÞðsPðu; tÞ þ rsÞ þ
s2Pðu; tÞ � s2

2

� �
du;

V t ¼

Z t

0

ðs2 þ s2Pðu; tÞ þ 2rssPðu; tÞÞdu;

Covðv; tÞ ¼

Z v

0

ðs2 þ rsðsPðu; tÞ þ sPðu; vÞÞ þ sPðu; vÞsPðu; tÞÞdu:

8>>>>>>>><>>>>>>>>:
(8)

Furthermore, using standard probabilistic results on bidimensional Gaussian
vectors, we know that the conditional law of lnðStÞ given ðlnðSvÞ ¼ lnðHÞÞ, where
lnðHÞ ¼ h is an arbitrary given level, is normal and possesses the following mean bM
and variance bV :

bMðv; tÞ ¼Mt þ
Covðv; tÞ

Vv

ðlnðHÞ �MvÞ;

bV ðv; tÞ ¼ V t �
Cov2ðv; tÞ

Vv

:

8>>><>>>:
Standard computations enable computing explicitly the above moments in the two

cases of linear and exponential volatility structures. The results for M, V and Cov are
given in Appendix B (from them, one obtains straightforwardly the expressions forbM and bV ) in the case of an exponential structure of volatility which corresponds to
the Vasicek model.
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2.2. Semi-closed form formulas

We can now start deriving the quasi-closed expressions of the arbitrage-free
formulas (1) and (2) of barrier call options. We start with the up and in and the up

and out options.

2.2.1. Pricing up call options

To begin with, we can reexpress the formula of the up and in option in (1) in the
forward-neutral universe:

Cui ¼ Pð0;TÞEQT
ððST � KÞþ1Smax4H Þ.

This can alternatively be written as

Cui

Pð0;TÞ
¼ EQT

ðST1ST4K1Smax4H � K1ST4K1Smax4H Þ

or as

Cui

Pð0;TÞ
¼ EQT

ðST1ST4K1Smax4H Þ � KQT ðST4K ;Smax4HÞ.

Finally, the up and in call option price Cui is given by

Cui

Pð0;TÞ
¼A� KB, (9)

where

A ¼ EQT
ðST1ST4K1Smax4H Þ;

B ¼ QT ðST4K ;Smax4HÞ:

(
Note the following problem that appears in the computation of A and B: the

explicit expression of the law of Smax, and a fortiori of the joint law of Smax and ST , is
not known. The event fSmax4Hg is indeed equivalent to the first passage time of the
process S through the barrier level H occurring before the maturity T of the option.
Let us denote by gu this first passage time (‘u’ for an ‘up’ barrier). One readily has
fSmax4Hg ¼ fgupTg. We do not know the explicit joint distribution of gu and rgu ;
yet, a discretized version of it can be obtained using the recursive argument of Collin-
Dufresne and Goldstein (2001). In Appendix A we expose this algorithm, titled the
extended Fortet method, along a new and clean presentation (relying in particular on
distributions and not on densities).

The distribution function of the random vector ðrgu ; guÞ at time t under the
T-forward-neutral measure QT is unknown, as previously said. We approximate it by
discretizing along the time and interest rate dimensions. The interval ½0;T � is subdivided
into nT subperiods of length dt ¼ T=nT , and the interest rate is subdivided between rmin

and rmax into nr intervals of length dr ¼ ðrmax � rminÞ=nr: Finally, we denote by tj ¼ jdt

and ri ¼ rmin þ idr the discretized values of time and interest rate. Next, denote also by

quði; jÞ ¼ QT ðrgu 2 ½ri; riþ1�; gu 2 ½tj ; tjþ1�Þ
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the discretized version of the first-passage time distribution. We show below that semi-
closed-form formulas for A and B are written as

A �
XnT

j¼0

Xnr

i¼0

kðbmtj ;T
; bStj ;T ;KÞq

uði; jÞ;

B �
XnT

j¼0

Xnr

i¼0

N
lnðKÞ � bmtj ;TffiffiffiffiffiffiffiffiffiffibS2

tj ;T

r
0BB@

1CCAquði; jÞ;

8>>>>>>>><>>>>>>>>:
(10)

where k is defined, for a Gaussian random variable X following the law Nðm;s2Þ, by

kðm; s; aÞ ¼ EðeX1eX4aÞ ¼ exp mþ
s2

2

� �
N

mþ s2 � lnðaÞ

s

� �
and bms;T and bSs;T are the two first centered moments of lT conditional on Fs, namelybms;T ¼ EQT

½lt jFs�;bSs;T ¼ VarQT
½lt jFs�

(
whose detailed expressions can be found in Appendices A and B.

The above development of A can be justified as follows. Start with the expression

A ¼ EQT
½ST1lnðST Þ4 lnðKÞ1gupT �

which can be simplified according as

A ¼ EQT
½elT 1lT4 lnðKÞ1gupT �.

Using the conditional distribution of lT on the information Fs, we can write

A ¼

Z T

0

Z þ1
�1

EQT
½elT 1lT4 lnðKÞ j rgu ¼ r; gu ¼ s�QT ðrgu 2 dr; gu 2 dsÞ.

Given bms;T and bSs;T the two first centered moments of lT conditional on Fs and
defining k by kðm; s; aÞ ¼ EðeX1eX4aÞ, one can readily write

A ¼

Z T

0

Z þ1
�1

kðbms;T ; bSs;T ;KÞQT ðrgu 2 dr; gu 2 dsÞ.

Finally, one obtains the following discretized approximation2 of A:

A �
XnT

j¼0

Xnr

i¼0

kðbmtj ;T
; bStj ;T ;KÞq

uði; jÞ.
2Because the integrated functions are smooth enough, a first order maximization of the discretization

can be obtained by considering that the volume measured the double integral is a sum of small volumes,

each of them comprised between two parallelepipeds. This yields therefore the following first order

maximization of the discretization error: � ¼
PnT

j¼0

Pnr
i¼0 jkðjÞq

uði; jÞ � kðj � 1Þquði � 1; j � 1Þj where we

remark that bms;T and bSs;T depend on ls and rs, so where kðjÞ is a simplified notation for kðbmtj ;T
; bStj ;T ;KÞ.
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This explains the discretized approximation of A in formula (10). The one for B
can be obtained in a similar way. Start considering

B ¼ EQT
½1lT4 lnðKÞ1gupT �

which can be developed as

B ¼

Z T

0

Z þ1
�1

EQT
½1lT4 lnðKÞ j rgu ¼ r; gu ¼ s�QT ðrgu 2 dr; gu 2 dsÞ

or as

B ¼

Z T

0

Z þ1
�1

QT ½lT4 lnðKÞ j rgu ¼ r; gu ¼ s�QT ðrgu 2 dr; gu 2 dsÞ.

This is equivalent to

B ¼

Z T

0

Z þ1
�1

N
lnðKÞ � bmtj ;TffiffiffiffiffiffiffiffiffiffibS2

tj ;T

r
0BB@

1CCAQT ðrgu 2 dr; gu 2 dsÞ

and, finally, one obtains

B �
XnT

j¼0

Xnr

i¼0

N
lnðKÞ � bmtj ;TffiffiffiffiffiffiffiffiffiffibS2

tj ;T

r
0BB@

1CCAquði; jÞ.

Therefore, one has all the necessary elements to compute the up and in barrier call
options formula (9). As mentioned above, the terms quði; jÞ can be computed using
the methodology in Appendix A.

Now, to price an up and out call, it is sufficient to use the following parity relationship:

Cuo ¼ Pð0;TÞEQT
ððST � KÞþÞ � Cui

noting that

Pð0;TÞEQT
ððST � KÞþÞ ¼ Pð0;TÞ kðMT ;ST ;KÞ � KN

lnðKÞ �MTffiffiffiffiffiffiffi
V T

p

� �� �
,

(11)

where all the moments and symbols are the same as defined before. Let us now come to
the pricing of down barrier call options.

2.2.2. Pricing down call options

We will sketch the main ideas and formulas in this paragraph; clearly, all the
derivations are analogical to the ones of the previous paragraphs. We start with the
pricing of down and in call options. Their valuation formula in (2) can be reexpressed
in the forward-neutral universe as

Cdi ¼ Pð0;TÞEQT
ððST � KÞþ1SminoH Þ.
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Next, we denote by gd the first passage time by S of a down barrier H. Defining
Smin on ½0;T �, one has: fSminoHg ¼ fgdpTg. By analogy with (9), we write

Cdi

Pð0;TÞ
¼ C� KD, (12)

where

C ¼ EQT
ðST1ST4K1gdpT Þ;

D ¼ QT ðST4K ; gdpTÞ

(
and where, by analogy with the previous developments, one has the approximations

C ¼
XnT

j¼0

Xnr

i¼0

kðbmtj ;T
; bStj ;T ;KÞq

dði; jÞ;

D ¼
XnT

j¼0

Xnr

i¼0

N
lnðKÞ � bmtj ;TffiffiffiffiffiffiffiffiffiffibS2

tj ;T

r
0BB@

1CCAqdði; jÞ:

8>>>>>>>><>>>>>>>>:
(13)

As concerns the down and out call, its pricing follows readily from the following
parity relationship:

Cdo ¼ Pð0;TÞEQT
ððST � KÞþÞ � Cdi,

where the first term is given by Eq. (11).
To conclude this section, we have constructed semi-closed-form expressions for

standard barrier options under a Vasicek model for the interest rate dynamics. The term
‘semi’ in ‘semi-closed form’ refers to the fact that the quði; jÞ and qdði; jÞ factors are only
approximations of the first passage time distribution. In practice, and as the final section
shows, these semi-closed form formulas can be computed extremely quickly. The next
section shows how this methodology can be used to price a particular exotic contract.
3. Pricing a structured barrier option

Our aim will now be to shed some light on the use of the above method to price
some exotic contracts. We start defining the ‘shark’ option, which was introduced a
couple of years ago by the Equity desk of an international bank.

3.1. The shark index option

In its most basic form, a shark option is an option whose holder is entitled to receive
a rebate at expiry if the underlying index hits a barrier and a European payoff
otherwise. The latter depends on the value of the underlying index at expiry and may
take the form of a European call or a functional of it, as the following developments
will show. The underlying index may be a financial asset, an interest rate, an exchange
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rate or an Equity Index. In full generality, it is correlated to the interest rates. Here, we
assume that payments are always settled at expiry (ranging typically from 1 to 5 years
for these options). The presence of a barrier decreases the premium, compared to
vanilla options. The barrier can be hit from below or from above and can be a knock-
in or a knock-out one. It may also be constant, deterministic or stochastic.

For the sake of clarity, we shall consider from now on a special kind of shark
option. Yet, the reader should keep in mind that our method can be applied to value
many other similar products. Let us describe more precisely our contract: it is a
medium-term structured note, having a 1–5 year maturity, guaranteeing the investor
(purchaser of the shark) b% of his capital, and linearly linked to an Equity Index.
However, this link is cut as soon as the growth rate of the index is equal or greater
than a% during the shark’s life, in which case the investor receives b% of his initial
investment at the end. In formal terms, the investor receives at expiry time T:

Mð1þ RT Þ if Smaxpð1þ aÞS0;

Mb otherwise;

(
(14)

where RT ¼ ðST � S0Þ
þ=S0, M is a notional amount, St is the index at time t or the

underlying shark’s price at time t, and Smax is the maximum of S before the shark’s
maturity, that is, over ½0;T �.

As concerns a and b, they, respectively, describe the barrier level and the value of the
rebate, and we let them satisfy a40 and 0obo1þ a. We call this structured product a
standard shark and, without loss of generality, we assume M ¼ 1 for the sake of
simplicity. We give a numerical example in Section 4. We denote by H the barrier level:

H ¼ ð1þ aÞS0.

The payoff at maturity (assuming M ¼ 1) then writes

ð1þ RT Þ1SmaxpH þ b1Smax4H . (15)

In fact, one has 1þ RT ¼ 1þ ðST � S0Þ
þ=S0. This allows rewriting the payoff as

1þ
1

S0
ðST � S0Þ

þ1SmaxpH þ ðb� 1Þ1Smax4H . (16)

Technically, a shark option is merely an up and out barrier call option with a rebate.
Indeed, ðST � S0Þ

þ1SmaxpH is the payoff of an up and out call on the underlying S, with
a strike price K ¼ S0, and a barrier H. Due to the presence of a barrier condition, the
payoff at maturity is discontinuous. Moreover we call ‘shark option’ this contract
because of its shape (see Fig. 1). Recent studies show that such discontinuities in the
product’s payoff might be optimal from the issuer’s viewpoint (see Bernard et al., 2007).
We expect that such products will be more and more sold in the future, it is thus
important to be able to price them.

Shark contracts (defined above by formula (14)) are indeed very similar to typical
equity-linked securities. For instance, in the prospectus supplement of the EKLS,3

Citigroup Funding Inc. provides first a general description of this equity-linked
3Prospectus available online at www.amex.com, dated November 30, 2005.

http:www.amex.com
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Fig. 1. Payoff of a shark option when the barrier has not been hit before the maturity of the contract. It is

thus the maximum cash-flows the investor might expect at expiry time. Parameters are set to b ¼ 1:1,
M ¼ 100, H ¼ ð1þ aÞS0 ¼ 135.
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security: ‘‘at maturity, the EKLS return either the principal amount of your
investment in cash or, if the stock on which they are based declines by a
predetermined percentage or more at any time after the date of the prospectus
supplement ð. . .Þ up to and including the third trading day before maturity ð. . .Þ a
fixed number of shares of the underlying stock on which they are based.’’ Their
maturity payments are driven by a down and in event. The shark product presented
above is determined by an up and out event. Obviously the presented methodologies
apply in both cases. Let us now come back to our example and precise notation.

Denoting by r the risk-free interest rate, and using the fundamental result of
arbitrage pricing theory, and the expression of the final payoff (15), we can express
the shark’s option arbitrage-free price at time 0 as

Cð0;TÞ ¼ EQ e
�
R T

0
rs ds

1þ
1

S0
ðST � S0Þ

þ1SmaxpH þ ðb� 1Þ1Smax4H

� �� �
.

(17)

Coming now to the practical valuation of our barrier product, we set ourselves in
the forward-neutral world where the underlying follows (6). One readily obtains
using this latter world:

Cð0;TÞ

Pð0;TÞ
¼ 1þ

1

S0
CuoðST ;K ¼ S0;Barrier HÞ þ ðb� 1ÞQT ðSmax4HÞ

� �
.

(18)

The only term that cannot be computed using the first section is QT ðSmax4HÞ. We
denote it by E and this is in fact QT ðg

upTÞ. Using the approximation of the
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distribution of gu (see Appendix A), one obtains

E ¼ QT ðg
upTÞ �

XnT

j¼0

Xnr

i¼0

quði; jÞ.

Indeed, to obtain this formula, one should start writing

E ¼

Z T

0

Z þ1
�1

QT rgu 2 dr; gu 2 ds
� �

and then discretize along time and interest rate, and introduce the quði; jÞ terms.
Using this discretized version of the first-passage time distribution, one can obtain

the following formula for the shark contract value when the barrier is constant:

Cð0;TÞ ¼ Pð0;TÞ þ
1

S0
CuoðST ;K ¼ S0;HÞ þ ðb� 1ÞPð0;TÞE

which can be computed straightforwardly using results from Section 1.2. We shall
now concentrate on the particular case where the barrier is slightly modified in terms
of a zero-coupon bond: this case is particularly interesting because fully closed-form
formulas can be obtained.

3.2. Discounted barrier options

In this subsection, we take into account the effect of discounting the barrier. At
first look, such a structured product seems difficult to value fully explicitly. In fact,
we show below that this is the contrary and that the pricing problem can be solved in
closed-form. We assume that the frontier is given by a discounted constant barrier.
Formally, K being a constant, the barrier is a stochastic process ðDtÞt2½0;T � such that

Dt ¼ KPðt;TÞ, (19)

where, only in this section, this expression replaces in the contract covenant the
barrier H ¼ ð1þ aÞS0. The shark’s formula then becomes

Cð0;TÞ ¼ Pð0;TÞEQT
½ð1þ RT Þ1f8t2½0;T �;StpDtg þ b1f9t2½0;T �;St4Dtg�.

In fact, the factor 1þ RT ¼ 1þ ðST � S0Þ
þ=S0 can also be written as:

1þ RT ¼ 1fSToS0g
þ

ST

S0
1fST4S0g

(20)

which allows to write together with Eq. (19):

Cð0;TÞ ¼ bPð0;TÞQT sup
0ptpT

St

Pðt;TÞ

� �
4K

� �
þ Pð0;TÞQT SToS0; sup

0ptpT

St

Pðt;TÞ

� �
pK

� �
þ EQ e

�
R T

0
rs ds ST

S0
1fSTXS0;sup0ptpT ðSt=Pðt;TÞÞpKg

	 

.
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Notice that the third term is expressed under the risk-neutral probability Q. To
simplify the following developments, we divide the Shark contract into a sum of
three expressions according as

C½0;T � ¼ Pð0;TÞ½bE1 þ E2� þ E3,

where the three sub-contributions to the contract can be defined as:

E1 ¼ QT sup
0ptpT

St

Pðt;TÞ

� �
4K

� �
;

E2 ¼ QT SToS0; sup
0ptpT

St

Pðt;TÞ

� �
pK

� �
;

E3 ¼ EQ e
�
R T

0
rs dsST

S0
1fSTXS0 ;sup0ptpT ðSt=Pðt;TÞÞpKg

	 

:

8>>>>>>>><>>>>>>>>:
(21)

Then, against all expectations, one can obtain the following proposition:

Proposition 3.1. The three components of a shark contract, when the barrier is

proportional to a zero-coupon bond and under a Vasicek term structure of interest

rates, can be written in closed-form as follows:

E1 ¼N

ln
S0

KPð0;TÞ

� �
�

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BB@
1CCAþ S0

KPð0;TÞ
N

ln
S0

KPð0;TÞ

� �
þ

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BB@
1CCA;

E2 ¼N
lnðPð0;TÞÞ þ

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0B@
1CA� S0

KPð0;TÞ
N

ln
S2
0

K2Pð0;TÞ

� �
þ

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BBB@
1CCCA;

E3 ¼N

ln
KPð0;TÞ

S0

� �
�
tðTÞ
2ffiffiffiffiffiffiffi

tðTÞ
p

0BB@
1CCA� KPð0;TÞ

S0
N

ln
S0

KPð0;TÞ

� �
�

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BB@
1CCA

�N
lnðPð0;TÞÞ �

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0B@
1CAþ KPð0;TÞ

S0
N

ln
S2
0

K2Pð0;TÞ

� �
�

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BBB@
1CCCA;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
(22)

where tðTÞ ¼
R T

0
½ðsPðu; tÞ þ rsÞ2 þ s2ð1� r2Þ�du and N is the cumulative standard

normal distribution function.

The proof of this proposition can be found in Appendix C. To sum up, we have
obtained a closed-form formula for the shark option in the case of a stochastic
barrier defined as in (19). Moreover, this closed-form formula is very simple and has
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the same computational efficiency as the one we would obtain with a constant term
structure of interest rates (see Rubinstein and Reiner, 1991 for the pricing of barrier
options in a Black and Scholes context).

Unfortunately, the simplicity of the above result does not hold when the barrier is
merely a constant one, as exposed in the beginning of this article: semi-closed form
formulas are then in order. In the coming section, we shall compare the two main
contracts (defined, respectively, with a discounted and a constant barrier); a full
sensitivity analysis of these products will be presented.
4. Numerical analysis

One of the main goals of this article being to develop a new methodology to study
barrier products in the presence of stochastic interest rates, we start by checking its
accuracy by comparing the results it provides to the ones obtained by means of
Monte-Carlo simulations. By doing so, we show that the extended Fortet method
does indeed work correctly, and that it is much faster than the Monte-Carlo method.

Secondly, and from Section 3.3 on, we shall concentrate on the analysis of the
shark option, which is the core product example of our study. We compare the prices
and sensitivities of these contracts written either with a stochastically discounted
barrier, e.g. ð1þ aÞS0Pðt;TÞ, or with a constant barrier, e.g. ð1þ aÞS0. Amongst the
sensitivities studied here are the ones computed with respect to the barrier level, to
the underlying index’s volatility or to its correlation with the interest rates. Let us
start by giving the values of the parameters involved in our numerical analysis.

4.1. Parameters

In Table 1, we give some values for the general parameters useful for the coming
option valuations. Some of them will vary later on, and this shall be indicated in due
time.

We briefly recall the meanings of the above coefficients. The nominal of the
contract, M, is set to one for the sake of simplicity. S0 stands for the initial value of
the Equity Index. s is the underlying’s volatility and is set to 20%. The contract’s
maturity, T, is equal to 1 year. As concerns the maximum yield, in other words the
factor governing the level of the barrier, it is given by 1þ a ¼ 1:35. The barrier level
is indeed given by H ¼ ð1þ aÞS0 ¼ 135. The rebate’s percentage is equal to
b ¼ 110%. r is the correlation coefficient between the index process and the
instantaneous interest rate process r. We made our study with an exponential
Table 1

Data

M S0 s T a b r

1 100 20% 1 0.35 1.1 0.3
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Table 2

Interest rate process

a n r0 y

0.46 0.007 0.015 0.05

Table 3

Shark option values, rmin ¼ 0 and rmax ¼ 0:3

Extended Fortet Shark price Time (in seconds)

nT nr

50 50 1.0347 5

100 100 1.0296 95

120 120 1.0289 216

150 150 1.0282 598

180 180 1.0278 1291

200 200 1.0276 3881
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structure of the volatility of the interest rates, specified by the two parameters a and
n. The values chosen for the interest rate process parameters are given in Table 2.

r0 and y are necessary to specify the initial term structure of interest rates. In the
particular calibration subsetting chosen here, this is equivalent to knowing the
Government yield curve.

4.2. Pricing and hedging with the extended Fortet method

We first look at the pricing method and its accuracy, and then we concentrate on
the computation of Greeks.

4.2.1. Pricing issues

We start by pricing a shark option when the main parameters are defined as in
Tables 1 and 2. Table 3 displays numerical estimations of the option, done with the
extended Fortet method, and discretizing the interest rate between 0 and 0:3 (30% is
a very superior bound for an interest rate in a developed country). The extended
Fortet method is very fast. We observe that 150 discretization steps for the interest
rate and time already give an accurate result, estimating an asymptotic result of
about 1 � 0275.

Then, in Table 4, we compute the price of the same product, under the same
conditions, but we discretize the interest rate between �5% and 30%. Of course an
interest rate of �5% has no empirical meaning or existence. We display this table for
two reasons. First, it is often argued that Gaussian interest rate models permit
negative interest rates. In fact, this depends a lot on the calibrated parameters of the
driving process. In the current setting, we can observe by comparing Tables 3 and 4
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Table 4

Shark option values, rmin ¼ �0:05 and rmax ¼ 0:3

Extended Fortet Shark price Time (in seconds)

nT nr

50 50 1.0356 5

100 100 1.0299 85

120 120 1.0291 207

150 150 1.0283 544

180 180 1.0279 1168

200 200 1.0276 3009
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that allowing for negative interest rates in the grid only modifies the results by one
basis point (as soon as we have a reasonable degree of discretization of 150� 150),
and that asymptotically the two results are the same. Second, and consequently, this
shows that the results are quickly not sensitive to the bounds imposed on the interest
rate, provided these bounds are reasonably large.

For the sake of brevity, we do not report here other tables, done with other
values of rmin and rmax. The conclusions are the same. Namely, one can discretize
the interest rate between 0% and 20% or less, and obtain accurate results.
A discretization grid of 200� 200 points in time and interest rate gives a good
estimation of the price. This can be confirmed by performing Monte-Carlo
simulations, although they take much more time to compute. Indeed, and not
surprisingly, this path-dependent problem requires with Monte-Carlo a very thin
time discretization and many sample paths, due in particular to the bias that
typically appears when valuing a barrier by means of simulations (the question of ad

hoc corrections is discussed afterwards). To conclude, the extended Fortet method
computes more quickly than rough, uncorrected Monte-Carlo simulations based on
Euler schemes.

The goal of this paper is not the acceleration of the extended Fortet method, or of
Monte-Carlo simulations. Nevertheless, we believe it can be useful to discuss the
corrections needed for both methods. We start with the problems traditionally
associated with Monte-Carlo simulations, problems that are quite well known.

When performing Monte-Carlo simulations, setting a time step small enough is of
critical importance for the precision of the evaluation. If not, a discretization bias
shifts the value of the contract, whatever the number of simulations. To enhance the
accuracy of the method, Broadie et al. (1997) propose to shift the level of the barrier
(their proofs are done in the Black and Scholes framework). It cannot be easily
applied to our setting that includes stochastic interest rates. Howison and Steinberg
(2007) show how to extend this continuity correction to a wide variety of contracts
and models and compute higher order terms in the correction by using the match
asymptotic expansion (details and other applications can also be found in Howison,
2005). An other alternative to increasing the number of time steps is to use a method
correcting for the bias induced by the hitting probabilities between two time steps:
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see for instance the paper of Andersen and Brotherton-Ratcliffe (1996). This
method, also called the ‘continuity correction’, works well in the framework of Black
and Scholes (note in passing that this method can also be implemented in a few
particular settings with jumps, see for example Ribeiro and Webber, 2003). For each
path, one has to correct the fact that the barrier might have been triggered between
two steps of time discretization. We cannot apply directly this enhancement to
improve the Monte-Carlo simulations in our case since the interest rates are
stochastic and we do not have a closed-form formula for the probability to cross the
barrier between two steps.

Such corrections cannot apply to improve the extended Fortet method because it
is based on the construction of a time grid for the stopping time, and not on the
sampling of trajectories as with the Monte-Carlo method. Also, the computation
of conditional expectations, in this Fortet setting, is based on the approximation
of an integral by the ‘rectangle method’, which amounts to approximating the
function to integrate by a piecewise constant function and then to integrating
the latter. Note that several methods can be used to improve the convergence of the
rectangle method. First and instead, it is possible to use the ‘trapezoidal rule’ which
converges a little bit faster. Second, it is well known that using Gaussian quadratures
improves the speed of convergence. Gaussian quadratures provide flexibility in
choosing not only the weighting coefficients (weight factors) but also the locations
(abscissas) where the functions are evaluated. As a result, Gaussian quadratures
yield twice as many places of accuracy as that of the Newton–Cotes formulas with
the same number of function evaluations. When the function is known and smooth,
Gaussian quadratures usually have a decisive advantage in efficiency. This amounts
to writingZ b

a

f ðxÞdx ¼
Xn

k¼1

wðxkÞf ðxkÞ þ RnðxÞ,

where xk are the zeros of orthogonal polynomials. They are the integration points
and wðxÞ is the weighting function related to the orthogonal polynomials; Rn is the
error term. We refer the reader to textbooks on numerical integration for more
details.
4.2.2. Hedging issues

In general, investors are not only facing pricing issues but are also highly
interested in managing their portfolios and immunizing them with respect to the
various variables of the market (underlying’s volatility, index value, interest rate,
etc.). In order to do that, they need to be able to estimate the sensitivities of
derivatives’ prices (commonly referred to as ‘Greeks’). Remark in passing that
barrier products are known to be difficult to hedge since the sensitivity to the
underlying becomes infinite when the underlying is close to the barrier.

When using Monte-Carlo methods, the first idea, in order to compute Greeks, is to
use ‘finite-difference approximations’, but this produces biased estimates. Alter-
natives are proposed by Glasserman (2003). First, he proposes the pathwise method
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which consists in differentiating each simulated payoff with respect to the parameter
of interest. But discontinuities in the payoff are a main obstacle to the applicability
of this method. It seems to be impossible to get accurate results for barrier options
using this technique. In our case, the second method he proposes seems to be more
appropriate. It is called the ‘likelihood ratio’ method and amounts to differentiating
a probability density rather than an outcome. But then we need to know the
underlying density. In our particular problem, the density involved is the joint
distribution of ðt;StÞ which is unknown as mentioned previously. Thus it might also
be difficult to apply this approach. Moreover, sensitivities obtained by Monte-Carlo
simulations are known to be not smooth and to converge very slowly. To conclude,
computing Greeks with Monte-Carlo simulations is a difficult issue when dealing
with path-dependent products.

Two main advantages of the extended Fortet approach are the quickness of
convergence, and the fact that we do not need to smooth Greeks (and prices).
When the steps dt ¼ T=nT and dr ¼ ðrmax � rminÞ=nr become smaller, estimates
become more and more precise. We can compute Greeks in a very simple
way. Assume one needs to compute the sensitivity of the price with respect to any
factor denoted by x. Consider two close values x1 and x2 of x. The price, P, is
computed for each value of x. So the Greek w.r.t. x can be estimated by
ðPðx2Þ � Pðx1ÞÞ=ðx2 � x1Þ. One simply has to make sure that x1 and x2 are close
enough. This is the extremely simple method with which many Greeks like the
Vega and Rho and computed when using lattice methods. This method, although
simple, works particularly well in the extended Fortet method, as the following
developments illustrate.

Figs. 2–7 give some examples of prices and Greeks. Fig. 2 represents the price of a
shark option, with the set of parameters given in Section 4.1. The derivative with
respect to the underlying index S0, or Delta of the option, is represented in Fig. 3.
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Fig. 4. Up and out call price w.r.t. S0.
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The price of the option is not monotonic with respect to the index because this
option has a rebate. If we set b ¼ 0, the shark option becomes a standard up and out
call option (UOC) whose price and Delta are represented in Figs. 4 and 5; these
graphs possess familiar shapes. We also plot the Gamma of the up and UOC and of
the Shark with respect to S0 in Figs. 6 and 7. Note that the presence of a rebate
sharply changes the behavior of the price, Delta and Gamma of the option with
respect to the underlying’s initial value.
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4.3. Comparison of contracts

We want to compare the two types of contracts described in Sections 3.1 and 3.2
(shark contracts with, respectively, a constant barrier H and a discounted barrier
KPðt;TÞ). To enable an efficient comparison of both contracts, from now we set
H ¼ ð1þ aÞS0 and K ¼ ð1þ aÞS0 (identical levels at contract maturity for both
barrier products). We study the sensitivities of both options with respect to the
volatility of the underlying index, to the correlation and to the level of the barrier.
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Fig. 7. Gamma of the shark w.r.t. S0.
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This enlightens interesting properties of the product with the discounted barrier in
terms of hedging the sensitivity to interest rates. Note also that the sensitivity to the
barrier level is not standard since we do not study standard barrier option but barrier
options with a rebate.

4.3.1. Impact of the index volatility s
Let us now come to a brief study of a shark option’s dependence on the

underlying index volatility. We represent in Fig. 8 the price of a shark with,
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respectively, a constant barrier and a discounted barrier, and in Fig. 9 we plot the
sensitivities of these prices with respect to the volatility s of the underlying (also
known as Vega). Note that the sensitivities are seen to be smooth, and can also be
expected to be reasonably accurate.

For these graphs, all parameters are chosen as in Section 4.1, except s which
ranges between 1% and 80%. One can first observe that the Vega is obtained as a
smooth function of the underlying and again that the presence of a rebate changes
the standard sensitivity to volatility of barrier products.
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4.3.2. Impact of the correlation r
We plot in Figs. 10 and 11 the probability to hit the barrier (before the contract

maturity) with respect to s, the volatility of the underlying, and with respect to r, the
correlation coefficient between the Equity Index and the interest rate. For both cases,
when the volatility of the underlying increases, the hitting time probability increases
accordingly. They have the same behavior with respect to the correlation too. We
can notice that the hitting probability is always higher in the case of a discounted
barrier and it sharply depends on s.
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Figs. 12 and 13 plot, respectively, the contract value with respect to the
correlation, and its sensitivity to the correlation (often called ‘Kappa’ of the option),
again w.r.t. the correlation. We let the correlation r vary between �0:8 and 0:8 in
both graphs (we do this for the sake of illustration, this is not a restriction).

Let us first consider the case of a discounted barrier. In this particular situation,
the contract price is nearly insensitive to a change in the correlation. On the contrary,
when the barrier is constant, the shark’s price is a remarkably decreasing function of
the correlation. One of the advantages of imposing a stochastic barrier clearly
appears here: it can help cancel the impact of the randomness of interest rates on
derivative prices and hedge the correlation between the underlying and interest rates.
The behaviors of the two subproducts clearly varies with respect to the correlation.
Note that they have similar fluctuations with respect to the volatility.

4.3.3. Impact of the barrier level

Let us now come to the numerical study of the dependence on the barrier level. To do
this, we plot the probability of hitting the barrier, in Fig. 14, and Cð0;TÞ, the contract’s
value, in Fig. 15 with respect to the barrier level (defined, respectively, by H ¼

ð1þ aÞS0 and HPðt;TÞ). We keep the parameter values from Table 1, except a which
ranges between 0:1 and 1 (in correspondence to H which ranges between 110 and 200).

The interpretation of Fig. 14 is straightforward: as the barrier increases, the
probability that it be hit sharply diminishes. When the barrier value is high enough (say
170), the probability to reach it is nearly null. Despite the gross appearance of
Fig. 15, the influence of the barrier level on the price is indeed quite small. In particular,
the contract’s price shows a relative variation of less than 3% when the barrier goes
from 110 to 200 (assuming b ¼ 1:1o1þ a). The explanation of this phenomenon
obtains directly from a P&L analysis. At expiry time T, the investor gets back his initial
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investment, whether the barrier has been reached or not, and this payment mostly
determines the price of the contract. Obviously, for a knock-out option without rebate,
we would observe a stronger influence of the barrier on the price.

Let us now come to a finer description of Fig. 15. One can observe that the price
of the option is decreasing with respect to the barrier for low levels of the barrier.
This comes from the fact that for b ¼ 1:1, the rebate is quite important. Choosing a
rebate b ¼ 0:3 and ceteris paribus, one would obtain the graph displayed in Fig. 16.
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Now, how can we explain the weird behavior of the shark price when the barrier
varies between 110 and 120 in Fig. 15? In general, it is advantageous not to hit the
barrier; yet, in the presence of a high rebate, say when 1þ a � b, the probability to
get a yield strictly superior to b is equal to the joint probability that the following
events occur: Smaxoð1þ aÞS0 and ST4bS0. As this joint probability is very weak, it
is in the interest of the optionholder that the barrier be hit, in order to ensure a
return at least equal to b. To conclude on this particular situation, when the barrier
level is increased, the probability to reach it is diminished, and the contract becomes
less interesting, which explains the decrease of its price.
5. Conclusion

This article develops a general methodology useful for pricing barrier options in a
Vasicek framework. When the derivative’s barrier is a discounted one, we show that it
is possible to obtain closed-form formulas to price it, using time change techniques.
When the barrier is constant, quasi-closed-form formulas can be found. These latter
formulas are computed using the extended Fortet method, exposed within a new and
clean apparel in the first appendix of this text, and whose first implementation dates
back to Collin-Dufresne and Goldstein (2001) in their seminal structural model of the
firm. We indeed obtain general formulas that extend the ones of Rubinstein and
Reiner (1991) for pricing barrier options when the driving risk-free interest rate is a
Vasicek process. We illustrate our approach on a particular exotic derivatives, the
shark index, which is indeed a type of up and out barrier option with rebate.
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Structured products have become more and more popular on equity and hybrid
markets. Long-term barrier products represent a higher and higher percentage of
index linked products. The maturities of these products are often around 5 years:
being able to compute their sensitivity to interest rate risk is thus of an utmost
importance for risk-management purposes. Concluding this paper, a numerical
analysis is conducted based on an example of these structured products (namely a
shark option). This analysis gives a practical illustration of the extended Fortet
method, and we have demonstrated its practical efficiency. We also show how both
the pricing and hedging of these products can be done, and in fact our results hold
for all standard barrier options (their full pricing formulas being given in the first
section of this paper).
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Appendix A. The extended Fortet method

Let us assume that one initially observes lnðA0Þ ¼ l04 lnðHÞ ¼ h. The process lt is
continuous. If at time t, the process lt ¼ ‘oh then the barrier has been hit and the
down condition is realized. We denote by gd this first hitting time. Thanks to this
remark, one has

QT ðlt 2 ½‘; ‘ þ d‘½; rt 2 ½r; rþ dr½ j l0; r0Þ

¼

Z t

0

Z þ1
�1

QT ðlt 2 ½‘; ‘ þ d‘½; rt 2 ½r; rþ dr½ j ls ¼ h; rs ¼ r0Þ

�QT

rgd 2 ½r
0; r0 þ dr0½

gd 2 ½s; sþ ds½

 !
.

Let us integrate the previous equation with respect to ‘ between �1 and h. Using
Fubini’s theorem, one obtains

QT ðltph; rt 2 ½r; rþ dr½ j l0; r0Þ

¼

Z t

0

Z þ1
�1

QT ðltph; rt 2 ½r; rþ dr½ j ls ¼ h; rs ¼ r0Þ

�QT

rgd 2 ½r
0; r0 þ dr0½

gd 2 ½s; sþ ds½

 !
. ðA:1Þ
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To simplify the notations, we define, respectively, F and C by

Fðr; tÞdr ¼ QT ðltph; rt 2 ½r; rþ dr½ j l0; r0Þ;

Cðr; t; r0; sÞdr ¼ QT ðltph; rt 2 ½r; rþ dr½ j ls ¼ h; rs ¼ r0Þ:

(
Under these assumptions, F and C could be expressed as closed-form formulas.

The previous Eq. (A.1) becomes

Fðr; tÞ ¼
Z

s2½0;t�

Z
r02R

Cðr; t; r0; sÞQT ðrgd 2 ½r
0; r0 þ dr0½; gd 2 ½s; sþ ds½Þ. (A.2)

As the distribution function of gd is unknown, we approximate it. Discretizing
along time and interest rate, with nT discretization steps for the time
(t0 ¼ 0; t1; . . . ; tnT

¼ T) and nr for the interest rate. One has r0 ¼ rmin; . . . ; rnr ¼

rmax where rmin and rmax are chosen such as the probability that r takes values outside
the interval ½rmin; rmax� is negligible. We denote by qdði; jÞ:

qdði; jÞ ¼ QT ðrgd 2 ½ri; riþ1�; gd 2 ½tj ; tjþ1�Þ,

where the superscript d is for a down barrier.
Then, formula (A.2) could be written as

Fðri; tjÞ ¼
Xj

v¼0

Xnr

u¼0

Cðri; tj ; ru; tvÞq
dðu; vÞ.

If j ¼ 0, the previous expression becomes

Fðri; t0Þ ¼
Xnr

u¼0

Cðri; t0; ru; t0Þq
dðu; 0Þ.

We then obtain the following expression: qdði; 0Þ ¼ QT ðrgd 2 ½ri; riþ1�; gd 2 ½t0; t1�Þ.
Noting that Cðri; t0; ru; t0Þ ¼ 1fri¼rug, one readily has

qdði; 0Þ ¼ Fðri; t0Þ.

The quantities qdði; jÞ can be computed by means of a recursive algorithm. First,
the quantities qdði; 0Þ are computed for every i thanks to the above expression. From
them the quantities qdði; jÞ for jX1 are recursively obtained.

Fðri; tjÞ ¼
Xj

v¼0

Xnr

u¼0

qdðu; vÞCðri; tj ; ru; tvÞ

¼
Xnr

u¼0

qdðu; jÞCðri; tj ; ru; tjÞ þ
Xj�1
v¼0

Xnr

u¼0

qdðu; vÞCðri; tj ; ru; tvÞ.

Thanks to Cðri; tj ; ru; tjÞ ¼ 1fri¼rug, one has

qdði; jÞ ¼ Fðri; tjÞ �
Xj�1
v¼0

Xnr

u¼0

qdðu; vÞCðri; tj ; ru; tvÞ. (A.3)
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To sum up, we have now, with formula (A.3) the possibility to compute the terms
qdði; jÞ, which give us the approximated distribution function of gd we are looking for
because we have closed-form expressions for Fð r; t Þ and Cð r; t; r0; s Þ:

Fðr; tÞdr ¼ QT ðltph; rt 2 dr j l0; r0Þ;

Cðr; t; r0; sÞdr ¼ QT ðltph; rt 2 dr j ls ¼ h; rs ¼ r0Þ:

(

Note that X ¼ ðl; rÞ is a Gaussian Markov process whose dynamics are given by

dX t ¼ d
lt

rt

" #
¼

rt � rg �
s2

2
� srsPðt;TÞ

a y�
n
a
sPðt;TÞ � rt

� �
2664

3775dtþ
sr s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
n 0

" #
:
dZT

1

dZT
2

" #
.

Denote by f lt;rt
the density function of ðlt; rtÞ under QT . Thanks to conditional

results, one obtains

f lt;rt
ð‘; rÞ ¼ f rt

ðrÞf ltjrt
ð‘Þ.

F0 and Fs represent the available information at time 0 and s. Using the Markov
property of ðlt; rtÞ, conditioning by Fs is like conditioning by ðls; rsÞ. One then
obtains C and F:

Fðr; tÞ ¼ f rt
ðrjF0Þ

Z h

�1

f ltjrt
ð‘ jF0Þd‘;

Cðr; t; r0; sÞ ¼ f rt
ðrjFsÞ

Z h

�1

f ltjrt
ð‘ jFsÞd‘:

8>>><>>>:
As the process ðlt; rtÞ is Gaussian, the conditional law of ltjrt knowing the available

information at time s is Gaussian. We denote the conditional moments by mðrt; ls; rsÞ

and S2ðrt; ls; rsÞ:

mðrt; ls; rsÞ ¼ EQT
½lt jFs� þ

Covðlt; rt jFsÞ

Var½rt jFs�
ðrt � EQT

½rt jFs�Þ;

S2ðrt; ls; rsÞ ¼ Var½lt jFs� �
Covðlt; rt jFsÞ

2

Var½rt jFs�
:

8>>><>>>:
The above moments are computed in Appendix B. Let N be the normal standard

distribution function. We then obtain

Fðr; tÞ ¼ f rt
ðrjr0ÞN

h� mðr; l0; r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðr; l0; r0Þ

p !
;

Cðr; t; r0; sÞ ¼ f rt
ðrjrs ¼ r0ÞN

h� mðr; ls ¼ h; r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðr; ls ¼ h; r0Þ

p !
;

8>>>>><>>>>>:
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where f r is the transition density of r. Recall that

f rt
ðr j rsÞ ¼

1ffiffiffiffiffiffiffiffi
2pv
p e�ðr�mÞ2=2v,

where m ¼ E½rtjrs� and v ¼ Var½rtjrs� (given in Appendix B).

Remark. The up case.

The up case is in fact the case when l0oh. We define as gu the first hitting time of
the process lt to the barrier’s level lnðHÞ ¼ h. The proof is exactly the same as in the
down case. Thus, one obtains the following formulas for the approximate density of
ðrgu ; guÞ (similar to formula (A.3)):

quði; 0Þ ¼ Fuðri; t0Þ;

quði; jÞ ¼ Fuðri; tjÞ �
Xj�1
k¼0

Xnr

l¼0

quðl; kÞCuðri; tj ; rl ; tkÞ;

8>><>>: (A.4)

where

Fuðr; tÞ ¼ f rt
ðr j r0ÞN

mðr; l0; r0Þ � hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðr; l0; r0Þ

p !
;

Cuðr; t; r0; sÞ ¼ f rt
ðr j rs ¼ r0ÞN

mðr; ls ¼ h; r0Þ � hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðr; ls ¼ h; r0Þ

p !
:

8>>>>><>>>>>:
Appendix B. Moments of the processes rt and lt

We work under the forward-neutral measure QT . We compute in this appendix
the moments of the instantaneous interest rate r and those of l associated
with the index process. We choose to do the study with the exponential structure
of volatility. With n40 and a40, the volatility structure can be written as
follows:

sPðt;TÞ ¼
n
a
ð1� e�aðT�tÞÞ.

Define Ba by

BaðuÞ ¼
1

a
ð1� e�auÞ.

Under the forward-neutral measure, the interest rate process r follows the
dynamics given by

drt ¼ aðyt � rtÞdtþ ndZT
1 ðtÞ,
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where yt ¼ y� ðn2=aÞBaðT � tÞ. Thanks to Itō’s lemma and an integration by parts,
one obtains

rt ¼ e�at rue
au þ

Z t

u

yse
as dsþ n

Z t

u

eas dZT
1 ðsÞ

� �
.

In this particular case, the instantaneous interest rate r is an Ornstein–Uhlenbeck
process under the forward-neutral probability QT . The zero-coupon bond maturing
at T satisfies the relationship:

Pðt;TÞ ¼ e�BaðT�tÞrt�ZðT�tÞ, (B.1)

where

ZðuÞ ¼ y�
n2

2a2

� �
ðu� BaðuÞÞ þ

n2

4a
ðBaðuÞÞ

2.

Conditional moments of the process r: r is a Gaussian process with the following
conditional moments (with sot):

EQT
½rt j ru� ¼ e�aðt�uÞru þ ya�

n2

a

� �
Baðt� uÞ þ

n2

a
e�aðT�tÞB2aðt� uÞ;

VarQT
½rt j ru� ¼ n2B2aðt� uÞ;

CovQT
ðrs; rtjruÞ ¼

n2

2a
e�aðsþtÞðe2as � e2auÞ ¼ n2e�aðt�sÞB2aðs� uÞ:

8>>>>>><>>>>>>:
Conditional moments of the process l: Integrating the dynamics (7) of the process l

under QT between u and t, one has

lt ¼ lu þ

Z t

u

rs ds�
s2

2
þ

srn
a

� �
ðt� uÞ þ srn

Z t

u

e�aðT�sÞ ds

þ sr
Z t

u

dZT
1 ðsÞ þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p Z t

u

dZT
2 ðsÞ.

Now remark that the integral
R t

u
rs ds is also a Gaussian process whose conditional

moments are given by the following formulas:

EQT

Z t

u

rs ds jFu

	 

¼ ruBaðt� uÞ þ

Z t

u

e�as

Z s

u

eaxyx dxds;

VarQT

Z t

u

rs ds jFu

	 

¼

n2

a2
ðt� uþ B2aðt� uÞ � 2Baðt� uÞÞ;

CovQT

Z t

u

rv dv;

Z t

u

dZT
1 ðsÞ jFu

� �
¼

n
a
ðt� u� Baðt� uÞÞ:

8>>>>>>>><>>>>>>>>:



ARTICLE IN PRESS

C. Bernard et al. / Journal of Economic Dynamics & Control 32 (2008) 2903–2938 2935
This enables us to obtain the following conditional moments for the process lt

when sot:

EQT
½lt jFu� ¼ lu � rg þ

s2

2
þ

srn
a
� yþ

n2

a2

� �
ðt� uÞ �

n2

a2
e�aðT�tÞB2aðt� uÞ

þ ru � yþ
n2

a2
þ

n2

a2
e�aðT�tÞ þ

srn
a

e�aðT�tÞ

� �
Baðt� uÞ;

VarQT
½lt jFu� ¼ s2 þ

n2

a2
þ 2

srn
a

� �
ðt� uÞ � 2

n2

a2
þ

srn
a

� �
Baðt� uÞ

þ
n2

a2
B2aðt� uÞ;

Covðls; lt jFuÞ ¼
n2

a2
e�aðt�sÞB2aðs� uÞ þ s2 þ

2srn
a
þ

n2

a2

� �
ðs� uÞ

�
n2

a2
þ

srn
a

� �
ðe�aðt�sÞ þ 1ÞBaðs� uÞ:

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:
Covariance between lt and rt:

CovQT
ðlt; rt jFuÞ ¼

n2

a
þ rsn

� �
Baðt� uÞ �

n2

a
B2aðt� uÞ.

Moments of the first and second order for the process lt ¼ lnðStÞ: Replacing u by 0
in the above expressions of the conditional moments of lt, we obtain the following
formulas:

MexpðtÞ ¼ ln
S0

Pð0; tÞ

� �
þ

n2

4a3
�

n2

2a2
þ

rsn
a
þ

s2

2

� �
t�

n2

4a3
e�2at

þ
n2

2a3
þ

rsn
a2

� �
e�aðT�tÞ �

n2

a3
þ

rsn
a2

� �
e�aT þ

n2

2a3
e�aðTþtÞ;

V expðtÞ ¼ s2 þ
n2

a2
þ

2rsn
a

� �
t�

3n2

2a3
�

2rsn
a2
þ

2nðnþ arsÞ
a3

e�at �
n2

2a3
e�2at;

Cexpðv; tÞ ¼ �
rsn
a2
þ

n2

a3

� �
þ s2 þ

2rsn
a
þ

n2

a2

� �
v�

n2

2a3
e�aðtþvÞ

þ
rsn
a2
þ

n2

a3

� �
ðe�av þ e�atÞ �

rsn
a2
þ

n2

2a3

� �
e�aðt�vÞ:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
Appendix C. Proof of Proposition 2.1

We show here how one can compute the three terms (depending on the supremum
of the underlying process). Our main tool is the Dubins–Schwarz theorem which says
that a continuous local martingale (say M) can be represented as a Brownian motion
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time-changed by the quadratic variation of the continuous local martingale (say
BhMi). Let us denote by N the stochastic integral in formula (5):

Nt ¼

Z t

0

ðsPðu;TÞ þ rsÞdZT
1 ðuÞ þ

Z t

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
dZT

2 ðuÞ.

Let also t be its quadratic variation: tðtÞ ¼ hNit. N is a martingale, with Nð0Þ ¼ 0,
and its quadratic variation satisfies

tðtÞ ¼
Z t

0

½ðsPðu;TÞ þ rsÞ2 þ s2ð1� r2Þ�du.

Consequently, we may write (5) as St=Pðt;TÞ ¼ ðS0=Pð0;TÞÞ exp½Nt � tðtÞ=2�.
Computation of E1: Finally, the expression of E1, the first term of (21), can be

expressed as

E1 ¼ QT sup
t2½0;T �

�
tðtÞ
2
þNt

� �
4 ln

KPð0;TÞ

S0

� � !
.

Using the Dubins–Schwarz theorem, N is a t time-changed QT -Brownian motion
B. This readily yields

E1 ¼ QT sup
t2½tð0Þ;tðTÞ�

�
t
2
þ Bt

n o
4 ln

KPð0;TÞ

S0

� � !
.

Then, armed with the law of the supremum of an arithmetic Brownian motion (see
for instance the third chapter of Jeanblanc et al., 2007), we can obtain the closed-
form formula:

E1 ¼N

� ln
KPð0;TÞ

S0

� �
�

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BB@
1CCAþ S0

KPð0;TÞ
N

� ln
KPð0;TÞ

S0

� �
þ

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BB@
1CCA.

Computation of E2: To compute E2, we start noting that

E2 ¼ QT �
tðTÞ
2
þ BtðTÞo ln Pð0;TÞð Þ; sup

t2½tð0Þ;tðTÞ�
�
t
2
þ Bt

n o
p ln

KPð0;TÞ

S0

� � !
.

Here, the problem is solved using the joint law of an arithmetic Brownian motion
and its supremum (see the same reference as above). This yields directly

E2 ¼N
lnðPð0;TÞÞ þ

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0B@
1CA� S0

KPð0;TÞ
N

ln
S2
0

K2Pð0;TÞ

� �
þ

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p

0BBB@
1CCCA.
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Computation of E3: To compute E3 we recall from Eq. (3) that

exp �

Z T

0

ru du

� �
ST

S0
¼ exp �

s2T
2
þ

Z T

0

srd bZ1ðuÞ þ

Z T

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
d bZ2ðuÞ

� �
.

Using Girsanov’s Theorem, we know that eZ1ðuÞ ¼ bZ1ðuÞ � sru and eZ2ðuÞ ¼bZ2ðuÞ � s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
u are two standard Brownian motions under the appropriate

measure eQ built with the Radon–Nikodym density process:

d eQ
dQ
¼ exp �

s2T
2
þ

Z T

0

srd bZ1ðuÞ þ

Z T

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
d bZ2ðuÞ

� �
.

After changing the measure, one obtains

E3 ¼ eQ STXS0; sup
0ptpT

St

Pðt;TÞ

� �
pK

� �
.

We need the expressions of St=Pðt;TÞ under eQ. After changing probability
measure in the dynamics (3) and (4) of St and Pðt;TÞ, we can write

St

Pðt;TÞ
¼

S0

Pð0;TÞ
exp

ett

2
þHt

� �
,

where Ht ¼
R t

0ðsPðu;TÞ þ rsÞd eZ1ðuÞÞ þ ð
R t

0 s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
d eZ2ðuÞ and ett ¼ hHit.

Then, one obtains

E3 ¼ eQ et
2
þ eBetX lnðPð0;TÞÞ; supet2½etð0Þ;etðTÞ� et2þ eBet

� �
p ln

KPð0;TÞ

S0

� � !
,

where eB is a standard eQ-Brownian motion. Using the same classical results as for E2

and noting that ett ¼ hNit ¼ tt, one finally obtains

E3 ¼N

ln
KPð0;TÞ

S0

� �
�

tðTÞ
2ffiffiffiffiffiffiffiffiffi

tðTÞ
p
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