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DEVELOPMENT AND PRICING OF A NEW
PARTICIPATING CONTRACT

Carole L. Bernard,* Olivier A. Le Courtois,† and François M. Quittard-Pinon‡

ABSTRACT

This article designs and prices a new type of participating life insurance contract. Participating
contracts are popular in the United States and European countries. They present many different
covenants and depend on national regulations. In the present article we design a new type of
participating contract very similar to the one considered in other studies, but with the guaranteed
rate matching the return of a government bond. We prove that this new type of contract can be
valued in closed form when interest rates are stochastic and when the company can default.

1. INTRODUCTION

Life insurance contracts, especially participating contracts, are the subject of a huge literature. Because
these contracts bear many covenants (e.g., surrender options, bonus options) and are subject to many
potential risks (e.g., interest rates, default, legal and mortality risks), building valuation tools and
methods to price and manage them is important. The rise of new accounting standards, with the
implementation by the International Accounting Standard Board (IASB) of International Accounting
Standards (IAS) 32 and 39 and of International Financial Reporting Standard (IFRS) 4, suggests that
fair value has become the key concept of corporate finance and insurance theory. In that sense this
evolution calls for a stronger integration of financial and actuarial methods.

Briys and de Varenne (1994, 1997a) built a simple framework for the pricing of life insurance con-
tracts that has been used often in the literature (see, e.g., Grosen and Jørgensen 2002). They value
life insurance contracts in a stochastic interest rate environment and take into account the default
risk of the issuing company. Nevertheless, as in the Merton model of a firm’s capital structure, default
here can occur only at the contract maturity. This is an obvious limitation of their framework. Briys
and de Varenne (1997b) in a different manner valued risky debt in a stochastic interest rate environ-
ment where the default barrier is stochastic, say, proportional to a zero-coupon bond. This model,
which is an extension of the Black and Cox model where default can occur at any time, is particularly
interesting from a financial viewpoint. To the best of our knowledge, this approach has not yet been
used in the insurance domain.

Since the articles of Briys and de Varenne, many papers have been written on participating contracts.
Among these contributions Miltersen and Persson (2003) should be noted, who provide closed-form
formulas for guaranteed investment contracts with participating covenants. Bacinello (2001) values
life insurance contracts with binomial trees. This method proves to be very useful in dealing with various
actuarial features: for example, mortality, surrender options, minimum guarantees, annual participat-
ing bonuses, and periodic premia. Tanskanen and Lukkarinen (2003) studied participating life insur-
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ance contracts in a Black and Scholes framework. In that case the insured has the right to surrender
at some prespecified dates and is able to change the reference portfolio. The pricing is done via nu-
merical schemes. One can also note Ballotta (2005), who evaluated with-profit contracts based on an
asset modeled by a jump diffusion process. In conclusion, a huge diversity of products, models, and
numerical methods exist with which to tackle the challenge of valuing fair value life insurance contracts.

In Bernard, Le Courtois, and Quittard-Pinon (2005), some participating contracts are priced under
both default risk and a stochastic term structure of interest rates. These authors represent the firm
assets by a standard geometric Brownian motion correlated with the driving factor of the interest rates.
Their interest rate framework is the Vasicek one, within which an exponential volatility structure is
used. To solve their problem and avoid heavy numerical schemes, they rely on the extended Fortet
(1943) method first developed in finance by Collin-Dufresne and Goldstein (2001), which is based on
the implementation of recurrence equations. It should be noted that although use of the extended
Fortet’s equations allows the latter authors to price participating contracts quite quickly (up to a few
minutes of computation time) compared to Monte Carlo methods, their numerical scheme is not
instantaneous yet.

In this article we construct a new type of contract close to the one presented in Bernard, Le Courtois,
and Quittard-Pinon (2005) but where the minimum guaranteed rate is of a different nature. We assume
that, under this new contract, the life insurance company guarantees a government rate to the insured,
in other words, a stochastic interest rate: if and when the company defaults, the covenant guarantees
a sum proportional to the value of a government bond, whose value is unknown at that time by defi-
nition. We shall denote these new contracts as ‘‘Government Rate Guarantee Participating Life Insur-
ance Contracts (GP-LICs).’’ In a similar fashion, the more classical contracts studied by Bernard, Le
Courtois, and Quittard-Pinon will be denoted as ‘‘Constant Rate Guarantee Participating Life Insurance
Contracts (CP-LICs).’’ The contribution of this article is to show that the introduced new contracts,
or GP-LICs, can be priced in closed form under a Vasicek term structure of interest rates. We also do
an empirical analysis of this contract’s prices and sensitivities.

2. DESIGN OF A NEW CONTRACT

We shall study in this article a particular type of contract (GP-LIC) that is an extension of the partic-
ipating contract (CP-LIC) studied in Bernard, Le Courtois, and Quittard-Pinon (2005). The originality
of this new contract lies in its minimum guarantee, which is proportional to the value of a government
bond and hence stochastic.

2.1 Contract Payoff
We classically assume that the funds raised by the insurance company constitute its assets and are
modeled by a lognormal diffusion. From the proceeds made by the company, a part is distributed as a
minimum rate and another part as a bonus or participating interest on the financial success of the
firm. The originality of a GP-LIC lies in its minimum guaranteed rate. We assume that the company
guarantees a rate proportional to that of a set of government zero-coupon bonds maturing, as a first
step, at the same time T as the contract. Indeed, if the company defaults, the insured recover the
amount they would have obtained by investing initially in government bonds, times a proportionality
coefficient.

We suppose that the insured invest the initial capital L0 in the participating policy. Leaving aside
the participating bonus temporarily, the minimum guarantee is equivalent to buying �L0/P(0, T) gov-
ernment zero-coupon bonds having an initial value equal to P(0, T) at time 0. Here � is chosen inferior
to one, so as to allow the company to guarantee a minimum rate inferior to the government rate.
Indeed, at maturity this position is worth �L0/P(0, T) contracts, whose value is equal to P(T, T) � 1;
in other words, it is worth � �L0/P(0, T). Provided � � P(0, T), the insured have a minimum amountglT
guaranteed at time T that is superior to their initial investment L0. Now, if the company defaults at
time t � T, a minimum amount � �L0P(t, T)/P(0, T) is guaranteed (value at time t of �L0/P(0, T)gl t
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zero-coupon bonds maturing at time T) by the covenant. This means in particular that we are neglect-
ing—for the time being and at this level—the additional bankruptcy costs that may occur at time t.

Let A be the assets of the firm, modeled as a lognormal process. The initial contribution of the
insured, L0, satisfies the following relationship: L0 � �A0, where A0 is the initial value of the assets.
For the initial amount of equity, it readily verifies E0 � (1 � �)A0. The insured receive at maturity T
of their contracts, provided the company did not bankrupt in the meantime,

gA if A � lT T T

glTg g� (T) � l if l � A �L TT T �
gl� Tg gl � �(�A � l ) if A � ,T TT T �

where, in the first situation, the company has defaulted at maturity, and the assets are returned to the
insured; whereas in the second situation, the company performs correctly, and the insured receive the
guaranteed rate defined above. Finally, in the third situation, an additional participating rate is redis-
tributed. Note that in the discriminating value /�, where the participating rate starts being distrib-glT
uted, the coefficient � appears, putting forward the equitable distribution of benefits between the
insured and the equityholders. Initially, the insured possess the amount �A0, or L0. At maturity, one
simply has to compare �AT with to decide whether a participation rate is added to the guaranteedgl ,T
rate.

To sum up, the final payoff to the insured can be written as
g g g� �� (T) � l � �(�A � l ) � (l � A ) , (2.1)L T TT T T

where one adds to the sum promised to the insured a bonus option corresponding to a participation
in the benefits of the company and a put option directly related to the terminal default risk of the
issuing company.

A first idea would be to value these contracts by taking the risk-neutral expectation of the above
payoff. This would essentially mean computing a linear combination of standard European options
whose closed-form formulas could be easily obtained. In the next paragraph, we shall extend this con-
tract to a setting where default can happen at any time (put differently, we shall move from a Merton-
type model to a Black and Cox-type model).

2.2 A More Refined Default Model
A life insurance company must be able to honor its commitments to the insured. It should be solvent
at any time, and not only at the maturity of the issued contracts (this corresponds to assuming clas-
sically that a covenant forces the company to be solvent at any time even if it pays back the insured
only at a fixed date in the future). In the case we consider, the insured has a minimum amount
guaranteed at any time t if the company defaults early. Let us recall that this is the value at time tgl t

of �L0/P(0, T) zero-coupon bonds maturing at time T. Of course, in the real world, this is a basis for
the calculation of what is really going to be distributed to the insured upon default, because bankruptcy
costs will have to be taken into account.

Default occurs when the level of the assets is not sufficient to reimburse the insured. Let � be the
company’s early default time. It may be written as

g� � inf{s � T/A � � l }, (2.2)s 1 s

where �1 is a proportionality coefficient whose meaning is that the managers cannot fully anticipate
bankruptcy and declare it when the assets attain a level �1 (which is inferior to at time s). Now,g gl ls s

let �2 be the bankruptcy costs parameter: upon default, a fraction of the assets are wasted to cover
various costs such as court fees. The amount of assets remaining at default has to be diminishedg� l1 �
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using �2 to obtain the residual amount that will be redistributed to the insured. In full generality,g� � l2 1 �

�1 and �2 should be estimated from past records on the assets values and recovery rates of defaulting
life insurance companies.

The payoff to the insured at default time � � T, assuming �1 � 1 and �2 � 1, may be written as
g� (�) � � � l 11 . (2.3)L 1 2 � ��T

The general pricing formula for our contract then can be established using the above expressions �L(T)
and �L(�), given in equations (2.1) and (2.3). Denoting by r the risk-free interest rate process, one
readily has under the risk-neutral measure Q the formula allowing one to compute V1, the value of a
GP-LIC:

T ��� r ds �� r dss s0 0V (0) � � [(e � (T)) 11 � (e � (�)) 11 ].1 Q L �	T L ��T

This equation can be written explicitly as
T �g g g�� r ds � � �� r ds gs s0 0V (0) � � [e (l � �(�A � l ) � (l � A ) ) 11 � e � � l 11 ]. (2.4)1 Q T T �	T 1 2 � ��TT T T

To do the valuation of this guarantee, one has to postulate some dynamics for the interest rates and
assets, which we will do in the following subsection.

2.3 Assets and Interest Rate Dynamics
We set ourselves in a general framework where we need to know for our study the forward-neutral
dynamics of the assets At and the zero-coupon bonds P(t, T). We assume that the assets follow a
lognormal dynamics correlated to the interest rates, which themselves possess an exponential volatility
structure 
P. The interest rate model considered here is driven by a unique factor, correlated to the
one of the assets, as mentioned before.

Setting � � 0 and a � 0, the volatility structure is expressed simply as

� �a(T�t)
 (t, T) � (1 � e ).P a

Under the risk-neutral measure Q, the dynamics of the assets At and the zero-coupon bond P(t, T) are
expressed as

dAt Q� r dt � 
 dZ (t) (2.5)tAt

and

dP(t, T) Q� r dt � 
 (t, T) dZ (t),t P 1P(t, T)

where ZQ(t) and are standard Q-Brownian motions with a correlation coefficient equal to �.QZ (t)1

Let us now construct a Brownian motion independent from that is, such that � �Q Q Q QZ Z , dZ dZ2 1 1 2

0. It is possible to split up ZQ into the two following components:
Q Q 2 QdZ (t) � � dZ (t) � �1 � � dZ (t).1 2

We have therefore decorrelated the pure interest rate risk from the other sources of risk. The dynamics
of the assets given in equation (2.5) now can be reexpressed as

dAt Q 2 Q� r dt � 
(�dZ (t) � �1 � � dZ (t)).t 1 2At

Recall that the Radon-Nikodym density allowing one to build the forward-neutral measure QT is defined
by
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dQ T Q T 2T �� 
 (s,T ) dZ (s)�(1/2)� 
 (s,T ) dsP0 1 0 P� e .
dQ

In this case the short-term interest rate dynamics obey the relationship
QTdr � a(
 � r )dt � � dZ (t),t t t 1

where 
t � 
 � �2/a2 (1 � e�a(T�t)) and we have defined a new Brownian motion satisfying underQTZ1

QT the relationship: � � 
P(t, T) dt.Q QTdZ dZ1 1

We also define such that and be noncorrelated QT -Brownian motions. The dynamics ofQ Q QT T TZ Z Z2 1 2

At and P(t, T) under QT are written as

dAt Q 2 QT T� (r � 
�
 (t, T)) dt � 
(�dZ � �1 � � dZ )t P 1 2At

and

dP(t, T) 2 QT� (r � 
 (t, T)) dt � 
 (t, T) dZ .t P P 1P(t, T)

After integrating these two dynamics, one obtains
t tA0 Q 2 QT TA � exp � (
 (u, t) � �
) dZ (u) � � 
�1 � � dZ (u)�t P 1 2
0 0P(0, t)

t 2 2
 (u, t) � 
P� � �
 (u, T)(
 (u, t) � �
) � du� � �P P
0 2

and
t tP(0, T) 1Q 2TP(t, T) � exp �� (
 (u, T) � 
 (u, t)) dZ � � (
 (u, T) � 
 (u, t)) du .� �P P 1 P P
0 0P(0, t) 2

Finally, note that the following dynamics will also be useful:
t tA At 0 Q 2 QT T� exp � (
 (u, T) � �
) dZ (u) � � 
�1 � � dZ (u)� P 1 2
0 0P(t, T) P(0, T)

t1 2 2 2� � ((
 (u, T) � �
) � 
 (1 � � )) du (2.6)�P
02

Let us now see the exhibition of the main formulas giving the price of a GP-LIC in the setting just
defined.

2.4 Main Formulas
We are now able to give a general valuation formula for our guarantee. Starting from equation (2.4),
and moving toward the forward-neutral world, one obtains (see the Appendix for more details)

g g g g� �V (0) � P(0, T) � [(l � �(�A � l ) � (l � A ) ) 11 � � � l 11 ]. (2.7)1 Q T T �	T 1 2 ��TT T T T T

We wish to write the above formula in a simplified form:

V (0) � P(0, T)[GF � BO � PO � LR], (2.8)1

and we define for this purpose:
gGF � l (1 � E )1T

gBO � ��(E � E ) � �l (E � E )6 2 7 3T
gPO � l (E � E ) � E � E8 4 9 5T� gLR � � � l E ,1 2 1T

where the fundamental contributions to the contract’s value express as follows:
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E1 � QT[� � T]

gE � � [A 11 11 ]2 Q T A �(l /�) ��TT T T

glTE � Q A � , � � T� �3 T T �

gE � Q [A � l , � � T]4 T T T

gE � � [A 11 11 ]5 Q T A �l ��TT T T

gE � � [A 11 ]6 Q T A �(l /�)T T T

glTE � Q A �� �7 T T �

gE � Q [A � l ]8 T T T

gE � � [A 11 ].9 Q T A �lT T T

The next section will compute explicitly the nine contributions defined above.

3. CONTRACT VALUATION

We start by detailing the mechanics allowing to compute the first subcontract term, E1.

3.1 Computation of E1

E1 is the probability that bankruptcy occurs before T. Using equation (2.2), this is the probability that
Au crosses � �L0/P(0, T) P(u, T), in other words, that the process Au/P(u, T) crosses the barrier �1�
L0/P(0, T) before T, or written more explicitly:

Au gE � Q inf � � l .� � � �1 T 1 TP(u, T)u�[0,T [

Start by noting that equation (2.6) is written as

A Au 0 N �(1/2)�(u)u� e ,
P(u, T) P(0, T)

where the differential of N is defined by
Q 2 QT TdN � (
 (s, T) � �
) dZ (s) � 
�1 � � dZ (s),s P 1 2

and the quadratic variation of N is
u

2 2 2�(u) � � N � � � [(
 (s, T) � �
) � 
 (1 � � )] ds. (3.1)u P
0

The key of the computation of E1 is the Dubins-Schwarz theorem (see, e.g., Karatzas and Shreve 1991),
which states that there exists a unique QT -Brownian motion B such that

∀u � [0, T], N � N � B .u 0 �(u)

Using this representation theorem, the searched probability becomes

Au gE � Q inf � � l� � � �1 T 1 TP(u, T)u�[0,T [

A0 gN �(1/2)�(u)u� Q min e � � l	 � � 
T 1 TP(0, T)u�[0,T ]

gP(0, T)� l1 TB �(1/2)�(u)�(u)� Q min (e ) �	 
T Au�[0,T ] 0

1
� Q min B � s � ln(� ��) .	 � � 
T s 12s�[0,�(T )]

It appears from this formula that we need to know only the law of the minimum of an arithmetic
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Brownian motion to compute E1 (it can be found, e.g., in Jeanblanc, Yor, and Chesney 2006). One
then obtains

1 1– –ln(� ��) � �(T) 1 ln(� ��) � �(T)1 2 1 2E � � � � .� � � �1 � ����(T) ��(T)1

To simplify notation, we use the auxiliary functions �� and �� defined by
1 1– –ln(x) � �(T) ln(x) � �(T)2 2� �� (x) � � , � (x) � � ,� � � ���(T) ��(T)

where � denotes the cumulative standard normal distribution function. In this setting one finally
obtains for E1:

1� �E � � (� ��) � � (� ��).1 1 1� ��1

We shall now see that the computation of E2, though different from the one of E1, follows readily,
based on the same tools and principles.

3.2 Computation of E2

Let us first recall the expression of E2:

gE � � [A 11 11 ]2 Q T {A �l /�} ��TT T T

g� � [A 11 11 ].gQ T {A �l /�} infT T u�[0,T ](A /P(u,T ))�� lu 1T T

To compute this formula, two steps are in order. First, one has to apply Girsanov’s theorem to move
from the probability QT to a new probability allowing us to simplify greatly the above expression (byQ̃
getting rid of AT). Then, another application of the Dubins-Schwarz theorem under the new probability

will help us reach E2.Q̃
Define the following Radon-Nikodym measure:

T T˜dQ 1Q 2 QT T� exp � (
 (u, T) � �
) dZ (u) � � 
�1 � � dZ � �(T) ,� �P 1 2
0 0dQ 2T

where �(T) is defined as in equation (3.1). Thanks to Girsanov’s theorem, it is possible to construct
under the two standard Brownian motions and defined by˜ ˜ ˜Q Z Z1 2

s
QT˜dZ (s) � dZ (s) � � (
 (u, T) � �
) du1 1 P

0

and
s

Q 2T˜dZ (s) � dZ (s) � � 
�1 � � du.2 2
0

Let us express AT under Q̃:

T TA 10 2˜ ˜A � exp � (
 (u, T) � �
) dZ (u) � � 
�1 � � dZ � �(T) .� �T P 1 2
0 0P(0, T) 2

Then the expression of E2 becomes
glA A0 T u g˜E � Q A � ; inf � � l .� � � �2 T 1 TP(0, T) � P(u, T)u�[0,T [

Define the martingale H as
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s s
2˜ ˜H � � (
 (u, T) � �
) dZ (u) � � 
�1 � � dZ .s P 1 2

0 0

Note that the quadratic variation of H is equal to the one of N; therefore, we denote it by �. Due to
the Dubins-Schwarz theorem, there exists a -Brownian motion that satisfies˜ ˜Q B

˜H � B .s �(s)

This allows simplifying E2 as
g gl P(0, T) � l P(0, T)A 1 1 10 T T˜ ˜ ˜E � Q B � �(T) � ln , inf B � s � ln .� � � � � � ��2 �(T ) sP(0, T) 2 �A 2 As�[0,�(T )[0 0

Finally, using the joint law of an arithmetic Brownian motion and its infimum, one obtains

A � ��0 1 � 2 2E � � (� � �).2 1P(0, T)

Applying the same method, we are able to compute the expressions of E3, E4, and E5.

3.3 Final Results
As far as the five first terms are concerned, they are obtained following the above methodology, and
write as

1
� �E � � (� ��) � � (� ��)1 1 1� ��1

A � ��0 1 � 2 2E � � (� � �)2 1P(0, T)
1

� 2 2E � � (� � �) (3.2)3 1� ��1

1
� � � 2E � � (� ��) � (� (� ��) � � (� ��))4 1 1 1� ��1

A0 � � � 2E � [� (� ��) � � ��(� (� ��) � � (� ��))].5 1 1 1 1P(0, T)

The four last terms, where � does not appear explicitly, are expressed readily as simple Gaussian
functions:

glTg M � lnl � �TT �E � � M ; �V ; , E � �� �6 1 T T 7� � ��VT (3.3)
gln(l ) � MTT gE � � , E � � (M ; �V ; l ),� �8 9 2 T T T�VT

where AT follows a lognormal law with moments MT and VT, and where �1 and �2 are defined by

2 2
 m � 
 � ln(a)X� (m; 
; a) � �[e 11 ] � exp m � �X � � � �1 e �a 2 


and
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2 2
 ln(a) � m � 
X� (m; 
; a) � �[e 11 ] � exp m � �X � � � �2 e �a 2 


when X is a random variable distributed as �(m, 
2).
Formulas (3.2) and (3.3) are truly closed-form formulas of the market value of our contract and can

be computed instantaneously once all the parameters are specified. In the last section, we shall provide
some interesting numerical results obtained using these formulas.

4. NUMERICAL ANALYSIS

In the first part of our numerical analysis, we give some numerical results related to GP-LICs and
explain how to set the different parameters to obtain fair-priced contracts. A second part is devoted
to the comparison of GP-LICs and CP-LICs (whose characteristics are recalled in subsection 4.3). The
only difference between these contracts is their guaranteed part. Indeed, the guaranteed interest rate
of a GP-LIC is proportional to the yield of a zero-coupon bond P(0, T), while a CP-LIC guarantees a
constant interest rate rg. We will first describe this former contract, before comparing it to GP-LICs.

4.1 Data
We give below our chosen parameter values. Some of them will change during the numerical study,
and we shall state whether we take the following values or not:

A0 100
� 0.85
a 0.4
� 0.008
� 0.2

 0.1
T 10
P(0, T) 0.6703
�1 0.6
�2 0.4

Let us first recall the meaning of the above coefficients. A0 refers to the initial assets value of the
company, and � is a coefficient yielding the part invested by the insured (i.e., L0 � �A0 � 85). The
two parameters a and � define the volatility 
P of the instantaneous interest rate process. The corre-
lation coefficient between the assets process A and the instantaneous interest rate process r is �. The
volatility 
 of the assets is set at 10%, which is quite low and is due to the presence of investment
grade bonds in the portfolio of the insurance company. T stands for the maturity of the contract; we
suppose it is equal to 10 years. P(0, T) is a government zero-coupon bond maturing at T. Finally, �1

is the scale factor on the threshold triggering bankruptcy and is set to 60%.
Note that some parameters have not been given yet: the participating bonus � and the proportional

coefficient � that determines the minimum guarantee. They will be specified when needed. Let us now
present some numerical results on the fair valuation of GP-LICs and their components.

4.2 The New Contract
First recall how the fairness of a contract can be assessed. One has set the contract parameters in such
a way as to establish the equality between the initial policyholders’ investment L0 and the initial market
value V1(0) of their contracts. That is, formally:

L � V (0).0 1

V1(0) can be computed instantaneously thanks to formulas (2.8), (3.2), and (3.3). Assigning a value
to all the parameters except one, we obtain the remaining parameter’s value by means of a simple root-
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Figure 1
Participation Coefficient � with Respect to y0
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search algorithm. Note that the participation coefficient is extremely easy to obtain in terms of the
other parameters (for this, use eq. [2.8]):

L0 � GF � PO � LR
P(0, T)

� � . (4.1)g�(E � E ) � l (E � E )6 2 7 3T

In such contracts two parameters play a key role: the guaranteed rate and the participation coeffi-
cient. We first concentrate on the guaranteed rate, which is proportional to the yield of the zero-
coupon bond P(0, T). Indeed, our contract guarantees the amount �L0/P(0, T) at time T.

Now, let us define y0 according as

�y T0L e � L ;0 0 P(0, T)

this is the yield that can be anticipated at time 0 by the insured, assuming subsequent bankruptcy will
not occur. Of course, this is only an indication at time 0 of the true yield of a GP-LIC; note also that
in this case the yield at time t is unknown because of the stochastic nature of the guarantee.

Keeping the values of our list above (except for the volatility 
 that is allowed to change), we compute
and graph in Figure 1 the fair participation coefficient � with respect to y0, at some given fixed values
of the volatility (
 � 6%, 
 � 10%, 
 � 13%, and 
 � 15%).

The interpretation of the two first curves (
 � 6% and 10%) is very standard: they are negatively
sloped because—in a general context—a higher-yield y0 should be compensated by a lower participation
coefficient. When the volatility of the underlying assets portfolio is higher (
 � 13% or 
 � 15%), one
can observe different curves—where � tends to be an increasing function of y0. The interpretation is
as follows: when 
 is high, the insured are facing a quite important default risk; because of this and
the fact that extracting more value from the assets (by distributing y0) increases the ruin probability,
policyholders will require higher participating rates � under higher yields y0. The horizontal dashed
line gives a limit beyond which fair contracts cannot be built without seriously harming shareholders.

Clearly, not every choice of parameters will yield acceptable fair contracts. In particular, some pa-
rameters obey regulatory constraints and cannot be fixed arbitrarily. For instance, in France partici-
pation coefficients should be higher than 85%, guaranteed interest rates (corresponding here to the



DEVELOPMENT AND PRICING OF A NEW PARTICIPATING CONTRACT 189

Figure 2
Participation Coefficient � with Respect to �
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yield y0) should be less than 75% of the average governement yield, and � should necessarily be inferior
to 96% (existence of minimum solvency margin of 4%). Parameters should range between realistic
values: the participation coefficient should preferably be less than 100%, and guaranteed interest rates
must of course be positive. These constraints are illustrated in Figure 2, where plots of the participation
coefficient � with respect to � can be observed. In this graph the first coordinate ranges between 80%
and 100%, and y0 is set to 0.5%, 2%, and 3%.

Under the existing constraints some contracts cannot exist; for instance, it is impossible to set �
� 84%, y0 � 3% and give a participation rate of � � 80%. The range of possibilities is located in the
grey zone (graphing the constraints 0.85 � � � 1 and � � 0.96). An important remark is that when
solvency is in danger (when equity decreases or � increases), then for the contract to be fair, its
associated participation coefficient should increase.

The above numerical study reveals that the contracts we introduced (GP-LICs) display very standard
features. Our next goal is to show in what respects they defer from other existing contracts (CP-LICs).

4.3 Comparison with Existing Contracts
We first recall briefly the design of CP-LICs, based on the description made in Bernard, Le Courtois,
and Quittard-Pinon (2005). Then we study the dependence of GP-LICs and CP-LICs on the guaranteed
interest rate, the interest rate volatility, and the correlation between the interest rate and the assets
processes.

4.3.1 Description
A CP-LIC is a participating contract with minimum and constant (instantaneously compounded) in-
terest rate guaranteed rg, and a participation coefficient equal to �. Note that in the case of CP-LICs,
rg holds between 0 and T and is contractual (whereas in the case of GP-LICs, y0 is just an equivalent
yield representing the rate guaranteed from time 0, only, and up to time T).

The initial investment of the insured is L0; at maturity T, in the case of no prior default, he or she
will receive the investment put up by the guaranteed rate, that is, � At that time, he or sheg r TgL L e .0T
should also get the participating part of the contract, �(�AT � provided the company performedg �l ) ,T
well. Default risk is taken into account by introducing a regulatory barrier in the valuation model of
the contract. The level of the assets of the company has to be above at any given time t; � isr tg� L e1 0
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Figure 3
� as a Function of rg
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the default or the first passage time of the assets’ process at the barrier Bt � � A CP-r t gg� L e � L .1 0 1 t

LIC therefore admits, under the risk-neutral probability Q, the valuation formula
T �g g g g�� r ds � � �� r dss s0 0V (0) � � [e (L � �(�A � L ) � (L � A ) )11 � � � e L 11 ].2 Q T T �	T 1 2 ��TT T T �

Under a stochastic interest rate environment, this formula cannot be developed in closed form be-
cause the minimum guaranteed interest rate (and hence the default barrier) is deterministic and not
proportional to risk-free zero-coupon bonds—as is the case for the new contracts introduced in this
article. Instead, this formula can be developed in semiclosed form, as shown by Bernard, Le Courtois,
and Quittard-Pinon (2005), and based on the Collin-Dufresne and Goldstein (2001) approach. We use
their methodology to price CP-LICs, with a slight adaptation because a clear distinction between �1

and �2 had not been made in their paper.
In fact, in a simple model where interest rates are constant and not stochastic, this standard contract

can be priced in closed form as shown by Grosen and Jørgensen (2002). We will use the notation V3

for the value of a CP-LIC evaluated in a constant interest rate model. We recall the notation V1 (re-
spectively V2) for the price of a GP-LIC (respectively a CP-LIC) evaluated under a stochastic interest
rate assumption.

Recall also that the yield of a GP-LIC is proportional to the yield of a government zero-coupon bond
maturing at time T. Before comparing the two contracts, we want them to guarantee approximately
the same yield. In fact, a GP-LIC’s yield can be known only at time 0 (because the contractual guarantee
at time t is proportional to P(t, T), which is stochastic). Denoting by rg the minimum guaranteed rate
of a CP-LIC, we set � for the GP-LIC in such a way as to satisfy the following equality:

1r TgL e � L � ,0 0 P(0, T)

where it is meant that both contracts should start offering the same initial yield (put differently, rg �
y0 should hold).

4.3.2 Participation Coefficient of a Fair Contract
We choose the parameters given earlier and graph in Figure 3 the value of the participation coefficient
� with respect to rg (where rg ranges between 1% and 3% and is equal to y0) for both contracts. Recall
that the participation coefficient � admits a closed-form expression. Indeed, equation (4.1) gives the
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Figure 4
E1 with Respect to rg
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corresponding formula for the case of GP-LICs (a similar expression can be found in Bernard, Le
Courtois, and Quittard-Pinon (2005) for the case of CP-LICs).

We need to affect a value to the constant risk-free interest rate to compute V3, that is, the value of
a CP-LIC in a constant interest rate framework. We chose r � 3.9% for the pricing of V3: this is this
particular value that makes the third curve in Figure 3 close enough to the two first ones.

Figure 3 is very typical, and its shape can be explained simply: to compensate for a low guaranteed
rate, the insurance company has to provide a high level of participation on the assets’ performance. In
the remainder of this study, we shall assume rg � 2%, and keep the fair value of � for each of the
existing three situations. This means that we will assume �1 � 89.70% as far as GP-LICs will be con-
cerned, �2 � 90.25% for CP-LICs in a stochastic interest rate context, and �3 � 89.63% for CP-LICs in
a constant interest rate context.

4.3.3 Default Probability
We denote by E1 the default probability, and display its dependence with regards to the minimum
guaranteed rate rg in Figure 4. It is interesting to interpret how the default probability varies. First of
all, and this is common sense, it increases with rg. Indeed, when all the other parameters are kept
constant, an increase of rg means an increase of the payout rate withdrawn from the assets, and hence
a higher default probability.

Second and more interesting, for a very analogous design and similar parameters, a GP-LIC is less
likely to induce bankruptcy of the issuing company than a CP-LIC. Let us explain this feature. Note
first that the CP-LIC’s default barrier is defined by

g �r (T�t)g� l e ,1 T

which is the discounted value at rg of the terminal guaranteed amount.
On the other hand, the GP-LIC’s default barrier is constructed as

g� l P(t, T),1 T

which is the terminal guaranteed amount discounted by means of a risk-free zero-coupon bond.
Note that the stochastic interest rate setting constructed above imposes a smaller default barrier

than the constant interest rate setting. This is because rg is usually much smaller than a risk-free zero-
coupon bond rate; in other words, �� P(t, T). Also note that even though P(t, T) is stochastic,�r (T�t)ge
in general it will never rise to the level of because of the very small value of rg that is postulated.�r (T�t)ge ,
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Figure 5
V with Respect to �
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The conclusion is that GP-LICs, although built with floating barriers (moving in standard market con-
ditions in the opposite way of the assets), bear smaller default probabilities than CP-LICs. This is
because the barrier of GP-LICs is always smaller than that of CP-LICs, because of the regulatory low
value of rg.

Note also that E1 is small for CP-LICs computed with V3, in other words, with a constant interest
rate model. Of course, these values (that would be obtained as simplifications by actuaries and would
lead them to underestimate the risk of CP-LICs) are wrong. A constant interest rate model is not
sufficient to price efficiently such contracts (for instance, and obviously, it cannot take into account
the correlation between the assets and interest rates), and this is another conclusion of our study.

4.3.4 Sensitivity to the Assets Volatility � and Interest Rate Parameter �

Let us recall that the parameter values given earlier. We assumed rg � 2% and computed the fair value
of � for each of the existing three situations (�1 � 89.70%, �2 � 90.25%, �3 � 89.63%). There the
assets’ volatility is set to 10%. So the situation 
 � 10% represents a fair contract.

We graph in Figure 5 the contract value as a function of the underlying assets volatility 
. The first
element that can be noticed is that all contracts have values that start increasing with the level of
volatility and then decrease (after an optimum at 
 � 10%) when the volatility continues increasing.
Actually, the optimum corresponds to the fair coefficients computed based on our parameters. All
parameters being equal, we observe the impact of a volatility change on the contract market value.
Decreasing the volatility below 
 � 10% corresponds to decreasing the appeal of the product to the
investors. It necessarily decreases its market value. Increasing it induces an increase of the default
probability and therefore a decrease of the policy value. This effect is indeed related to the fact that
we started from a fair contract.

Comparing both contracts, it appears that V1 always remains higher than V2 and has a smaller ten-
dency to decrease with respect to the volatility 
. Again, this is an advantage of GP-LICs. Less sensitive
to the volatility of the assets, it should be of greater interest to the investors. This is, of course, a
consequence of the way we construct the floating-rate guarantee (reducing in particular the default
probability of the issuing company), which is the only distinction between the two contracts. This type
of contract, which is less likely to induce default, is compatible with a higher level of 
, and this is a
sufficient reason for it to be worth more than a CP-LIC.

Finally, Figure 6 clearly exhibits the higher sensitivity to interest rates of a CP-LIC compared to a
GP-LIC. Here � is the parameter driving the size of the volatility of the interest rates, and could be
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Figure 6
V with Respect to �
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interpreted as a proxy of this volatility itself. Our conclusion at this stage is that a GP-LIC is more
akin to resist environment changes than a standard participating contract.

5. CONCLUSION

In a general framework taking into account actual features such as stochastic interest rates and default
probability, we suggest studying a new contract bearing many characteristics of usual participating life
insurance contracts. This new contract is designed in a way that leads to an easy understanding of its
behavior. Indeed, it reacts to financial and economic parameters qualitatively in a similar way as clas-
sical participating contracts and seems to have very interesting management properties. The main
technical argument for building this contract is that we value it in closed form. The practical construc-
tion of GP-LIC contracts, based on the use of government bonds, which are extremely liquid instru-
ments, seems easy to achieve.
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APPENDIX

GOING FORWARD-NEUTRAL

We explain briefly how to go from formula (2.4)
T �g g g g�� r ds � � �� r dss s0 0V(0) � � [e (l � �(�A � l ) � (l � A ) )11 � e � � l 11 ]Q T T �	T 1 2 ��TT T T T

to formula (2.7)

g g g g� �V(0) � P(0, T) � [(l � �(�A � l ) � (l � A ) )11 � � � l 11 ].Q T T �	T 1 2 ��TT T T T T

The main difficulty here is to show that
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� g g�� r dss0� [e � � l 11 ] � P(0, T)� [� � l 11 ]Q 1 2 ��T Q 1 2 ��TT T T

because the passage from the risk-neutral probability to the forward-neutral one is direct in the first
part of formula (2.4) and simply stems from the definition of these two worlds.

One can write
� �g g�� r ds �� r dss s0 0� [e � � l 11 ] � � � l � [e P(�, T)11 ],Q 1 2 ��T 1 2 Q ��TT T

where we are discounting a payoff of P(t, T) 11��T from � to 0.
Taking as new numéraire P(., T), one can write under QT:

P(�, T)11� ��Tg g�� r dss0� [e � � l 11 ] � � � l P(0, T)� ,� �Q 1 2 ��T 1 2 QT T T P(�, T)

which immediately simplifies as
� g g�� r dss0� [e � � l 11 ] � � � l P(0, T)� [11 ],Q 1 2 ��T 1 2 Q ��TT T T

and then the result follows.
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