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ABSTRACT

In this paper, we consider equity-linked life insurance con-
tracts that give their holder the possibility to surrender
their policy before maturity. Such contracts can be val-
ued using simulation methods proposed for the pricing of
American options, but the mortality risk must also be taken
into account when pricing such contracts. Here, we use
the least-squares Monte Carlo approach of Longstaff and
Schwartz coupled with quasi-Monte Carlo sampling and a
control variate in order to construct efficient estimators for
the value of such contracts. We also show how to incorpo-
rate the mortality risk into these pricing algorithms without
explicitly simulating it.

1 INTRODUCTION

Life insurance companies used to sell life insurance contracts
that provide a fixed capital at time of death of the insured. In
the past ten years, individuals are more and more willing to
combine investment and life insurance. Nowadays popular
contracts often involve a return linked to the market. Equity
index annuities are products that offer investors downside
protection because of the presence of a minimum maturity
benefit and death benefit with a potential upside rate in case
the index performs well (see for instance Palmer (2006)
or Hardy (2003) for more details on contracts currently
offered).

In this paper we investigate some of the options embed-
ded in an equity-linked life insurance contract. We include
standard options such as a guaranteed minimum maturity

benefit and a guaranteed minimum death benefit. But many
more complex options exist (see for instance Ballotta and
Haberman (2003) or Boyle and Hardy (2003) to cite only
a few). The possibility of early withdrawals is investigated
by Milevsky and Salisbury (2006). In this study we focus
on the surrender option, which gives policyholders the right
to terminate their policies before the maturity indicated in
their contract. It is the possibility of withdrawing the total
value of the contract. Literature on surrender options in
equity-linked life insurance products is recent since these
options have been neglected for a long time. In the 1990s,
they were indeed considered as very low-risk options since
interest rates in the market were much higher than the min-
imum guaranteed rate and the stock market performed very
well. After several bankruptcies in the insurance sector (for
instance around 2001, the British company, Equitable Life
went bankrupt due to options embedded in pension annuities
where mortality risk and financial risk were underestimated
and not hedged), embedded options are now taken more
seriously into account in the valuation of the contracts.

Each option offers investors some additional rights that
might cause some profit reduction for insurer if optimally
exercised. It is thus of utmost importance for companies
to understand all options embedded in contracts they sell
to better price and hedge them. Concerning the surrender
option, there are several consequences. First, the insurer
might incur financial losses from early payments caused by
surrendered policies due to liquidity of their assets (they
might have to liquidate depreciated assets to face surrender
demand). Indeed companies face a trade-off between long
term investment (and high returns) but with few liquidity
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or investing in liquid assets (with a lower return). Second,
in the long run insurer might suffer from adverse selection
since policyholders that have health problems and thus
insurability difficulties will not surrender. To avoid adverse
selection, some contracts (for example contracts that have
only a benefit in case of survival) do not allow surrender.
To minimize risks associated with the surrender option,
insurers can give high penalties. However insured are keen
on fair surrender conditions since these contracts are often
long-term investments and their needs might change and
force them to surrender. Regulators, lawyers and market
competition between companies protect investors against
unfair conditions in case of early termination.

To value this surrender option, no unified framework
exists in previous literature. Surrender decision can be of two
types: an exogenous surrender (for example, depending on
personal reasons: family problem, unemployment, sudden
need of liquidity) or an economic or endogenous surrender,
linked to interest rates fluctuations, financial environment
changes, etc. Actuaries estimate exogenous surrender from
historical data on the lapse rate. Exogenous surrender risk
can be diversified. Thus insurers should be more threatened
by endogenous surrender risk that is difficult to estimate (in
particular because of lack of data) and leads to systematic
risks. It seems that there were only weak historical evidence
of situations when surrender was optimal. Any approach
based on historical lapses might underestimate the real cost
of surrender options. Kuo, Tsai, and Chen (2003) study
how the lapse rate is influenced by unemployment rate and
interest rate fluctuations.

To deal with the second type of surrender decisions
(financial, endogenous surrender risk), the alternative is to
use a pure financial approach based on the option theory.
Surrender option is seen as an American option. Indeed
equity-linked contracts with a fixed term can be expressed
as a portfolio of European options (Brennan and Schwartz
(1976), and Boyle and Schwartz (1977) are the first ones
proposing this approach). The cost of the surrender option
is then the American premium that is added if these options
can be exercised before maturity. In the Black and Scholes
framework, Grosen and Jørgensen (1997) give the optimal
exercise barrier by using results from Myneni (1992). First
studies of the surrender option market value use numeri-
cal schemes to solve partial differential equations (Jensen,
Jørgensen, and Grosen 2001)) or binomial trees (Bacinello
2003, Bacinello 2005). Bacinello takes into account mor-
tality risk, periodical premiums and annual bonus, but both
of these approaches are extremely slow. Recently, Shen and
Xu (2005) have also investigated surrender options by way
of partial differential equations.

These works use the no-arbitrage principle and the
market value of the surrender option is the market value
of an optimal surrender decision. New accounting rules
force insurers to evaluate their liabilities (consisting mainly

of the sold contracts) at their market value even though
the contracts are not really traded on a market. There is
thus an important need for financial modeling of insurance
contracts. The no arbitrage approach to value the surrender
option has been criticized since this option is not traded.
Moreover, it implies that if it is optimal for one insured to
surrender, it is thus optimal for all of them to surrender,
which is not realistic even if it is the greatest risk faced by
the issuing company. Albizzati and Geman (1994) propose
an interesting model to address this issue. The idea is that
the value of the surrender option at a given date is known and
then it can be split over different dates using an exogenous
lapse rate. In this paper, we are also interested in giving a
new way to tackle this problem by introducing a parameter
that will depends on the individual, and will nuance his
“optimal” decision. All individuals will thus not have the
same optimal decision.

Our approach is a financial approach and we want to
obtain a “market value” of the surrender option, in a similar
way to what has been done in Andreatta and Corradin (2003),
Bacinello, Biffis, and Millossovich (2008a), and Bacinello,
Biffis, and Millossovich (2008b). We use the least-squares
Monte Carlo approach of Longstaff and Schwartz (2001) to
perform the valuation, but we include the mortality risk using
a different model and a different approach than Bacinello,
Biffis, and Millossovich (2008a), Bacinello, Biffis, and
Millossovich (2008b). In particular, by making the usual
assumption that the mortality risk is independent of the
financial risk, we show that survival times do not need to
be simulated. This reduces the variability of the obtained
estimators for the value of the surrender option. In addition,
we use the value of the European contract as a control variate
and perform simulations using quasi-random sampling.

The rest of this paper is organized as follows. In Section
2, we describe the life insurance contract, a point to point
Equity Indexed Annuity with a guaranteed minimum death
benefit and a guaranteed minimum surrender benefit. The
surrender decision is first based exclusively on financial
criteria, in other words a policyholder surrenders his policy
if the surrender amount gives him at least the opportunity
to buy the same contract at a lower price on the market.
But this approach overestimates the surrender option by
looking at the worst case that practically never happens:
all policyholders surrender at the same time (the optimal
surrender time). In Section 2.3, we address this issue and
introduce a parameter that represents the propensity of the
individual to act optimally. In Section 3, we show how
to include mortality risk in the least-squares Monte Carlo
approach used to price the contract. Then we discuss in
Section 4 the two methods we used to improve the efficiency
of this Monte Carlo estimator: a control variate based on
the European contract, and quasi-Monte Carlo sampling to
simulate the financial paths. Numerical results are given in
Section 5, and a brief conclusion is provided in Section 6.
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2 FRAMEWORK

We first describe the contract, a point-to-point Equity In-
dexed Annuity (EIA) with a minimum guarantee at maturity
or at time of death of the insured. Then, we give our assump-
tions for the underlying index dynamics, and we introduce
the guaranteed minimum surrender benefit studied in this
paper.

2.1 The contract

We consider a point-to-point EIA with a Guaranteed Mini-
mum Maturity Benefit. The policy has a fixed maturity date
of T years. The insured’s initial investment is P. We assume
that no additional payments are done after the inception of
the contract. Most EIAs in the U.S. are purchased with a
single premium (see Palmer (2006)).

The contract is linked to an index, for instance the
S&P 500 index. We denote by St the value of the index
at time t. We suppose a percentage α of the initial pre-
mium P is guaranteed at a minimum annual rate equal to
g. These parameters α and g are often constrained by
law. For instance, the United States have adopted recently
revised nonforfeiture regulations, stating that the minimum
guarantee under newly issued contracts must be at least
87.5% of all premiums paid, P accumulated at a minimum
interest rate, here g, between 1% and 3%. About one third
of EIAs apply their stated interest rate guarantee to only
87.5% percent of the premium, one third to 90%, and only
one fifth to 100%, see Palmer (2006).

The final payoff of the contract at maturity time T
writes as:

VT = αP max

(
(1+g)T ,

(
ST

S0

)k
)

. (1)

This contract is only for the purpose of illustration and
this study can easily be extended to more complicated
contracts. Insurance companies propose unit-linked policies
or equity-indexed annuities with additional death guarantees.
Assuming that we neglect longevity risk, mortality risk can
be diversified. Indeed deaths observed in a portfolio of
insureds might happen at independent dates. The large law
of numbers and the central limit theorem are suitable to
estimate risks. Note that this is not the case when mortality is
stochastic (as studied, for instance, by Bacinello, Biffis, and
Millossovich (2008a) and Bacinello, Biffis, and Millossovich
(2008b).

Here we assume the equity-linked contract described
by (1) is combined with a Guaranteed Minimum Death
Benefit. We assume the guaranteed minimum death benefit
is paid at the end of the year when the death of the insured

occurs and that it can be written as:

Dt = αP max

(
(1+gd)t ,

(
St

S0

)kd
)

, t = 1, . . . ,T,

(2)
if death occurs between t−1 and t, where we assume there
is no penalty but the guaranteed rate gd and the participation
kd in the index performance might be different than the ones
involved in the contract’s payoff described by (1). Palmer
(2006) note that few EIAs assess a surrender charge if the
EIA is cashed in due to the contract owner’s death.

Unlike the mortality risk, the financial risk cannot be
hedged by pooling arguments. All policies depend on the
same index and if it goes up, the insurer will have to pay
a high participation rate for all policies at the same time.
This cannot be hedged by accepting more policies. Theo-
retically, those risks can be hedged by using the following
decomposition of the contract’s final value as

VT = αP (1+g)T +max

((
ST

S0

)k

−αP (1+g)T ,0

)
,

(3)
which is a portfolio made up of a guaranteed amount
αP—usually yielding a lower interest rate g than the
risk-free rate r of the market— plus a long position
in a call option written on the underlying Sk

T . Using
Black&Scholes-type results, companies can adjust their
portfolio continuously and replicate the above payoff. This
decomposition and its pricing in a Black and Scholes
framework were first done in Brennan and Schwartz (1976)
and in Boyle and Schwartz (1977).

2.2 Model

For the ease of exposition, here we neglect all types of
costs, and assume the market is complete and perfectly
liquid. We set ourselves in Black and Scholes framework,
although our methodology could easily be applied to more
complex models. The risk-free interest rate is constant and
denoted by r. Since the market is complete, there is a
unique risk-neutral measure, Q. Dynamics of the index S
under the Q-measure write as:

dSt

St
= rdt +σdWt

where σ is the volatility of the index and Wt is a Q-standard
Brownian motion. The fair value of the contract is obtained
by taking the expectation under the risk-neutral probability
Q of the discounted cashflows:

ξ (S0,g,k,T ) = e−rT E [VT ] (4)
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whereVT is given by (1). After straightforward computations
in the Black and Scholes framework, we obtain a closed-
form formula for the European contract:

ξ (S0,g,k,T ) = e(g−r)T S0Φ

g− k
(

r− σ2

2

)
kσ

√
T


+ S0e(k−1)rT+k(k−1) σ2T

2 Φ

(
−α + kσ

√
T
)

,

where Φ(·) is the CDF of a standard normal variable.
This is the “risk-neutral price” the initial amount of

money needed to perfectly hedge the final cash-flows and
provide the payoff (1) to the insured for the European version
of the contract where surrender is not allowed and there is
no death benefit. This formula does not include the cost
of hedging, transaction costs and the discrete hedging error
that will obviously occurred in practice.

We now include the minimum guaranteed death benefit
defined earlier in (2). Let us assume the probability that a
policyholder of age x+t will die before the end of the year is
qx+t , for t = 0, . . . ,T −1, and we let px+t = 1−qx+t . More
precisely, if we include the mortality risk in the formula
(4), then we have that the European contract’s value at time
0, denoted V0,e, is given by

V0,e = T px×ξ (S0,g,k,T )+
T−1

∑
t=0

t pxqx+t×ξ (S0,gd ,kd , t +1),

(5)
where ξ is defined by the formula (4) and t px = ∏

t−1
j=0 px+ j

is the probability that an individual of age x survives at
least t years.

2.3 The surrender option

We are interested in a contract where there is a Guaranteed
Minimum Surrender Benefit. That is, we assume that the
above policy also offers a minimum surrender guarantee,
and that the right to surrender can only be exercised at the
end of each year until the maturity of the contract. Hence
this is a Bermudan-type option rather than a truly American
one.

In practice, this minimum guarantee is often indepen-
dent of the return of the index, and thus we make the
assumption that the policyholder receives the following
amount Lt if he surrenders the policy at time t:

Lt = (1−βt) αP (1+h)t , (6)

where 0≤ h < r is the guaranteed rate, and βt is the penalty
charged for surrendering at time t, for t = 1, . . . ,T −1. A
standard penalty would be for instance a decreasing rate over
years. Examples of penalty functions are given in Palmer
(2006). Sometimes a market value adjustment is applied

when market performs poorly. By law, the policy’s cash
surrender value cannot fall below the guaranteed minimum
value (h≥ g).

The individual will surrender because of financial rea-
sons if

Lt > Ct ,

where Ct is the market value at time t of the contract. In
other words, if the insured has an opportunity to make a
profit if he surrenders and that at the same time he can buy
exactly the same policy.

However, and as mentioned in the introduction, it is
plausible to assume that a policyholder may not make a
decision that is optimal from the purely financial point of
view when choosing to surrender or not. For this reason,
we assume there is an extra decision parameter λ ≥ 1 such
that the contract is surrendered only if

Lt > λCt .

In some sense, it means that some agents will react faster to
the surrender criteria than others. Informed agents will have
λ = 1. For uninformed agents that do not worry about their
investments, they will surrender if the surrender condition
is really interesting and thus if Lt is significantly higher
than the market value of the contract Ct . It should be clear
that as λ increases, the value of the (financial) surrender
option goes to 0, a fact that we verify in our experiments
of Section 5.

3 LEAST-SQUARES MONTE CARLO WITH
MORTALITY

Let us first review the least-squares Monte Carlo approach
as proposed in Longstaff and Schwartz (2001) applied to
the problem of pricing an equity-linked contract when there
is no mortality risk.

The method uses n realization paths {Si
t , t =

0,1, . . . ,T ; i = 1, . . . ,n} of the index, and then estimates
for each path i when is the optimal exercise time t∗i . This is
done by proceeding backward from T as follows: set t∗i = T ,
and the contract’s value on path i to V i

T , which is the value
of VT as in (1), but with ST replaced by the final value Si

T
of the index on path i. Then at time t = T −1,T −2, . . . ,1,
set t∗i = t and V i

t = Li
t if Li

t > Ĉi
t , where Ĉi

t is an estimate
of the continuation value of the contract at time t given Si

t ,
given by e−rE(Vt+1|Si

t), and Li
t is the surrender value at time

t on path i. This estimate Ĉi
t is obtained by regression of

the discounted contract’s value at the next time step against
the current value of the index. More precisely, a finite
set of multivariate basis functions {ψl(·), l = 0,1, . . . ,M} is
chosen, and the regression coefficients are estimated as

(β̂0, . . . , β̂M)T = (ΨT
Ψ)−1

Ψ
T (y1, . . . ,yn)T ,



Bernard and Lemieux

where yi = e−rV i
t+1, and Ψi,l = ψl(Si

t) for i = 1, . . . ,n, l =
0, . . . ,M. Then Ĉi

t = ∑
M
l=0 β̂lψl(Si

t). When Li
t ≤ Ĉ(t,Si

t),
then we simply update the contract’s value on path i by
discounting it for one more step, i.e., we set V i

t = e−rV i
t+1.

Once the optimal exercise times t∗i are estimated for each
path, the contract’s value is approximated by the low-biased
estimator

V̂0, f in =
1
n

n

∑
i=1

e−rt∗i Li
t∗i
, (7)

where we used the convention that Li
T = V i

T .
We now want to include the mortality risk in the above

pricing methodology, as well as the surrender parameter λ

described in the previous section. When deciding whether
to surrender or not, the policyholder must take into account
the fact that he/she might die in the coming year, thus
receiving Dt+1 at time t + 1 rather than holding on to the
contract. That is, the continuation value can be written as

E(Vt+1|Si
t) = e−r(qx+tE(Vt+1|Si

t ,death)
+px+tE(Vt+1|Si

t ,survival))
= qx+te−rE(Dt+1|Si

t)+ px+tCt

= qx+tξ (Si
t ,gd ,kd ,1)+ px+tCt .

where ξ is defined by (4). Hence at time t, the contract is
surrendered if

Lt > C̃t := qx+te−rDt+1 + px+tĈt ,

where Ĉt is the continuation value conditioned on survival
until t +1, and is calculated as before. In this case, we set
Vt = Lt . However the contract’s value Vt must be updated
differently when the surrender value Lt does not exceed the
weighted continuation value C̃t . More precisely, we have

Vt = e−r(qx+tξ (St ,gd ,kd ,1)+ px+tVt+1).

Once we have an estimate of the optimal exercise time t∗i
on each path i, then we must take into account the mortality
risk by replacing the estimator (7) by

V̂0 =
1
n

n

∑
i=1

Ai, (8)

where

Ai =

(
t∗i

pxe−rt∗i Li
t∗i

+
t∗i −1

∑
t=0

t pxqx+te−r(t+1)Di
t+1

)
,

and t px = ∏
t−1
j=0 px+ j is the probability that an individual

of age x survives at least t years. The idea is that if the
policyholder dies before the estimated optimal surrender

LsMCEqLinkMort()
for i← 1 to n

t∗(i)← T
generate Si

1, . . . ,S
i
T

V [i]←V i
T

for j← T −1 downto 1
q← qx+t
p = 1−q
compute β̂0, . . . , β̂M
for i← 1 to n

Ci
t ← ∑

M−1
l=0 β̂l, jψl(Si

t)
C̃i

t ← e−rqξ (Si
t ,gd ,kd ,1)+ pCi

t
if Li

t > λ ×Ci
t then

t∗[i]← t
V [i]← Li

t
else

V [i]← e−r(qξ (Si
t ,gd ,kd ,1)+ pV [i])

for i← 1 to n
A[i]← t∗[i] pxe−rt∗[i]Li

t∗[i]
for t = 0 to t∗[i]

A[i]← A[i]+ e−rt
t pxqx+tDi

t+1
return ∑

n
i=1 A[i]/n

Figure 1: Pseudocode describing regression-based Monte
Carlo for an equity-linked contract with mortality

time, then a death benefit will instead be paid at the end of
the year of death.

Summing up, we proceed as in the pseudocode given
in Figure 1.

4 EFFICIENCY IMPROVEMENT

A first way to improve the quality of the estimator (8) is
to use the value of the corresponding European contract as
a control variate. We know the European contract value
when the mortality is included. It is given by V0,e defined
earlier by (5). Hence the control variate estimator is given
by

V̂0,cv = V̂0 + γ̂(V0,e−V̂0,e), (9)

where V̂0,e is given by

V̂0,e =
1
n

n

∑
i=1

E i,
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where

E i = e−rT
T pxV i

T +
T−1

∑
t=0

e−r(t+1)
t pxqx+tDi

t+1.

The coefficient γ̂ in (9) is given by the estimated value
of Cov(Ei,Ai)/Var(Ei). The surrender option can then be
estimated as

X̂0,cv = V̂0,cv−V0,e. (10)

Secondly, we can use randomized quasi-Monte Carlo
methods to simulate the n paths of the index. This was done
in the context of the least-squares Monte Carlo algorithm
in Lemieux (2004), among others. Here, we do this using
a randomly digitally shifted Sobol’ point set, and apply the
Brownian bridge technique (Caflisch and Moskowitz 1995)
in order to reduce the effective dimension of the problem.

More precisely, what we need here is a T -dimensional
point set Pn in [0,1)T , obtained using the first n points of the
Sobol’ sequence (Sobol’ 1967) with the direction numbers
given in Bratley and Fox (1988). Then we randomize
this point set using a random digital shift (L’Ecuyer and
Lemieux 2002). By repeating the randomization process m
times independently, we thus obtain m estimators V̂0,l of the
form (8) for the contract (with the surrender option), but
where the path Si

1, . . . ,S
i
T is based on the randomized point

ũi,l , obtained by adding the lth digital shift to the ith point
of Pn, for i =,1 . . . ,n and l = 1, . . . ,m. The application of
the Brownian bridge technique in this case amounts to use
the first coordinate of ũi,l to generate Si

T , when constructing
the lth estimator V̂0,l , then the second coordinate is used to
generate Si

bT/2c, the third one for Si
bT/4c, and so on.

Once we have these m estimators V̂0,l , we can construct
a 95% confidence interval for V0 with half-width

1.96

√
1

m(m−1)

m

∑
l=1

(V̂0,l−V̄0)2,

where V̄0 = ∑
m
l=1 V̂0,l/m. A similar approach can be used

for the control variate estimator.

5 RESULTS

In what follows, we give results for different equity-linked
contracts. In each case, we report the value of the contract,
V̂0, the simulated value of the contract without a surrender
option, given by V̂0,e, and the value X̂0,cv of the surrender
option. Note that we also report the exact value of the
contract in the line starting with “exact”. For each estimate,
we report results using either Monte Carlo (MC) or ran-
domized quasi-Monte Carlo (RQMC) sampling, and give
below each estimate the half-width of a 95% confidence
interval for the value that we are trying to estimate. To

price the contract, we run simulations either with a control
variate—as given in lines “MC-cv” and “RQMC-cv”—or
without—as given in lines “MC-nocv” and “RQMC-nocv”.
Note that since the estimate X̂0,cv for the surrender option
differs only by a constant from the one V0,cv for the contract
itself, the half-width of the confidence interval is the same
for both estimators.

The default (benchmark) values for the parameters are:
T = 10 years, σ = 20%, P = 100, α = 0.85, r = 4%, the
minimum guaranteed rates g, h and gd are all set to 2%, and
the participating coefficient k and kd to 90%. The penalties
are as follows: β1 = 0.05, β2 = 0.04, β30.02, β4 = 0.01,
βt = 0 for t ≥ 5. We also assume that the policyholder is
rational and perfectly informed: λ = 1.

For mortality, we use a simple parametric model: the
Makeham’s model. The survival function s(x), which gives
the probability that an individual of age 0 will survive at
least x years, is given by

s(x) = exp
(
−
∫ x

0
µ(s)ds

)
= exp(−Ax−B(cx−1))

where µ(x) = A + Bcx with B > 0,A ≥ −B,c > 1,x ≥ 0.
We can then calculate the probability to live and to die as
follows:

t px =
s(x+ t)

s(x)
, tqx = 1− t px.

Melnikov and Romaniuk (2006) calibrated Makeham’s
model for the mortality in the USA and give the following
estimates of the parameters A, B and c:

A = 9.5666×10−4, B = 5.162×10−5, c = 1.09369.

All experiments have been performed by generating
25 i.i.d. groups of 8192 simulations, for a total of 204,800
simulation runs. This is about 10 times less than the number
of simulations—19,000 simulations with 140 seeds, for a
total of 2,66× 106 runs—used in Bacinello, Biffis, and
Millossovich (2008a), Bacinello, Biffis, and Millossovich
(2008b), who get results with about the same precision
as our RQMC estimators with the control variate (but use
stochastic mortality, as explained before). For the basis
functions of the regression, we use the first four Legendre
polynomials.

In Table 1, we report our results with the benchmark
parameters. The European contract has the value 92.7795.
Note that the initial premium of the contract is P = 100
and thus the market value of the contract is lower than
the premium charged at time 0. This is consistent with
real contracts that often include commissions and fees for
different services and options. Including the surrender option
increases the value of the contract by approximately 1.8.
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Table 1: Result with the default parameters

V̂0 V̂0,e X̂0
MC-nocv 94.479 92.689 –

0.208 0.216 –
MC-cv 94.565 – 1.785

0.024 – 0.024
RQMC-nocv 94.593 92.781 –

0.009 0.009 –
RQMC-cv 94.593 – 1.813

0.009 – 0.009
exact – 92.7795 –

Thus, the surrender option represents about 1.9% of the
total value of the (European) contract.

We now experiment with different values of λ , partic-
ipating parameters, and model parameters.

Table 2: Varying λ

V̂0 V̂0,e X̂0
λ = 1.05
MC-nocv 93.716 92.689 –

0.206 0.216 –
MC-cv 93.801 – 1.022

0.030 – 0.030
RQMC-nocv 93.750 92.781 –

0.024 0.009 –
RQMC-cv 93.750 – 0.970

0.024 – 0.024
exact – 92.7795 –
λ = 1.15
MC-nocv 92.718 92.689 –

0.219 0.216 –
MC-cv 92.810 – 0.031

0.015 – 0.015
RQMC-nocv 92.786 92.781 –

0.011 0.009 –
RQMC-cv 92.784 – 0.005

0.004 – 0.004
exact – 92.7795 –

We first increase the value of λ to 1.05 or 1.15 and we
report the results in Table 2. We observe that when λ is
increasing, the policyholder becomes less and less interested
in the surrender option. Its value becomes almost zero. In
fact, insurers rely a lot on this fact. Policyholders will not
have a financially optimal behaviour and will be reluctant
to surrender their policies. A situation where λ > 1 as it is
the case in Table 2 is thus more realistic. Note that it would
be interesting to look at the risk of a portfolio of policies
with a pool of policyholders with different parameter λ .

Table 3: Varying participation parameters

V̂0 V̂0,e X̂0
g = h = 0.03
MC-nocv 97.437 96.640 –

0.206 0.205 –
MC-cv 97.530 – 0.798

0.023 – 0.023
RQMC-nocv 97.558 96.734 –

0.014 0.009 –
RQMC-cv 97.556 – 0.823

0.010 – 0.010
exact – 96.7327 –
k = kd = 0.95
MC-nocv 96.827 95.170 –

0.233 0.242 –
MC-cv 96.924 – 1.652

0.024 – 0.024
RQMC-nocv 96.956 95.273 –

0.013 0.011 –
RQMC-cv 96.955 – 1.683

0.011 – 0.011
exact – 95.2718 –
h = 0.03
MC-nocv 96.907 92.689 –

0.205 0.216 –
MC-cv 96.992 – 4.213

0.026 – 0.026
RQMC-nocv 97.023 92.781 –

0.011 0.009 –
RQMC-cv 97.022 – 4.243

0.008 – 0.008
exact – 92.7795 –

We can also look at the impact of changes in the partic-
ipating coefficient k and kd , or in the minimum guaranteed
rates g, gd , and h. Our results suggest that the surren-
der option is less valuable when the minimum guarantees
at maturity, for death, and for surrender are higher (that
is, g = h = gd is higher) or if the participating coefficient
k at maturity or kd at time of death increases. Indeed,
the surrender option represents 0.82/96.73 = 0.85% of the
value of the European contract when the guaranteed rates
increase to g = h = gd = 3% instead of the benchmark case
of g = h = gd = 2%, and 1.68/95.27≈ 1.8% when the par-
ticipating coefficients k and kd are 95% instead of 90%,
instead of a ratio of 1.95% with the default parameters.
In the second case, we expect that an increase in the par-
ticipation at maturity and in case of death are incentive
to not surrender. But in the first case, there is a tradeoff
between the increased guarantee at maturity and death—
which are incentive for not exercising—and the increase in
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the guarantee in case of surrender. Our results suggest that
the increase at maturity and death offset the increase in the
surrender payoff. However, if only the guaranteed rate h
for the surrender option increases to 3%, then, as expected,
the option’s value increases from about 1.8 to about 4.24.

Finally, we can analyze the impact of the financial
assumptions and in particular the volatility of the underlying
index. We can compare the value of the surrender option
equal to 1.8 when volatility is 20% (benchmark parameter
in Table 1), with the values in Table 4, given by 1.47 if
σ = 10% or 1.91 if σ = 30%. The value of the surrender
option thus appears to be increasing with the volatility σ .
This is consistent with the well-known fact that the value
of an option increases with the volatility of the underlying
index.

Table 4: Varying financial model

V̂0 V̂0,e X̂0
σ = 0.1
MC-nocv 87.270 85.817 –

0.095 0.100 –
MC-cv 87.294 – 1.451

0.017 – 0.017
RQMC-nocv 87.310 85.844 –

0.006 0.002 –
RQMC-cv 87.310 – 1.466

0.006 – 0.006
exact – 85.8434 –
exact – 85.8434 –
σ = 0.3
MC-nocv 100.995 99.072 –

0.357 0.374 –
MC-cv 101.176 – 1.914

0.035 – 0.035
RQMC-nocv 101.176 99.264 –

0.023 0.026 –
RQMC-cv 101.174 – 1.913

0.014 – 0.014
exact – 99.2618 –

6 CONCLUSIONS

This paper extends the Least Squares Monte Carlo method
proposed by Longstaff and Schwartz (2001) to the valuation
of surrender benefits embedded in life insurance index linked
contracts. With a relatively small number of simulations,
we get a quite precise approximation of the surrender benefit
using quasi-Monte Carlo simulations and incorporating a
powerful control variate. We show how to include mortality
risk when this risk is modeled using fixed probabilities that
are the same for everybody. In practice, policyholders who
decide to surrender a life insurance contract are healthier than

the average. The surrender option will introduce adverse
selection (worse risks stay with the insurer and healthy
people leave the portfolio) and thus will increase a lot the
potential value of the surrender benefits. We believe that
the proposed method could easily be extended, for instance,
to the case where the optimal decision of the policyholder
is taken conditionally to his health state. We plan to study
this model in the near future.
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