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Abstract

Regulatory authorities demand insurance companies to control their risk exposure

by imposing stringent risk management policies. This article investigates the optimal

risk management strategy of an insurance company subject to regulatory constraints.

We provide optimal reinsurance contracts under different tail risk measures and analyze

the impact of regulators’ requirements on risk-sharing in the reinsurance market. Our

results underpin adverse incentives for the insurer when compulsory Value-at-Risk risk

management requirements are imposed. But economic effects may vary when regulatory

constraints involve other risk measures. Finally, we compare the obtained optimal designs

to existing reinsurance contracts and alternative risk transfer mechanisms on the capital

market.
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Introduction

European insurers have recently experienced increasing stress to incorporate the strict capital

requirements set by Solvency II. One key component of Solvency II is to determine the economic

capital based on the risk of each liability in order to control the probability of bankruptcy,

equivalently, the Value-at-Risk 1. This paper examines the optimal risk management strategy

when this type of regulatory constraint or alternative risk constraints are imposed to the insurer.

We show that if the insurer minimizes the insolvency risk, an optimal strategy is to purchase

a reinsurance contract to insure moderate losses but not large losses. Therefore, Value-at-Risk

could induce adverse incentives to insurers not to buy insurance against large losses. The same

strategy is also optimal when the insurer wants to minimize the Conditional Tail Expectation

(CTE) of the loss2. However, the optimal reinsurance contract is a deductible when the insurer

minimizes the expected variance. Hence, the optimal risk management policy varies in the

presence of different risk measures.

Our results offer some economic implications. First, our results confirm that regulation may

induce risk averse behaviors of insurers and increase the reinsurance demand. Mayers and Smith

(1982) were the first to recognize that insurance purchases are part of firm’s financing decision.

The findings in Mayers and Smith (1982) have been empirically supported or extended in the

literature. For example, Yamori (1999) empirically observes that Japanese corporations can

have a low default probability and a high demand for insurance. Davidson, Cross and Thornton

(1992) show that the corporate purchase of insurance lies in the bondholder’s priority rule. Hoyt

and Khang (2000) argue that corporate insurance purchases are driven by agency conflicts, tax

incentives, bankruptcy costs and regulatory constraints. Hau (2006) shows that liquidity is

important for property insurance demand. Froot, Sharfstein and Stein (1993), Froot and Stein

(1998) explain the firm would behave risk averse because of voluntary risk management.This

paper contributes to the extensive literature aiming to explain why risk neutral corporations

purchase insurance. As shown in this paper, risk neutral insurers may behave as risk averse

agents in the presence of regulations.

Second, our results provide some rationale of the conventional reinsurance contracts and link

existing reinsurance contracts with derivative contracts available in the capital market. Froot

(2001) observes that“most insurers purchase relatively little cat reinsurance against large events”.

Froot (2001) shows that “excess-of-loss layers” are however suboptimal and that the expected

utility theory can not justify the capped features of the reinsurance contracts in the real world.

Several reasons for these departures from the theory are presented in Froot (2001). Our paper

partially justifies the existence of “excess-of-loss layers” from a risk management perspective.

When the insurer implements risk management strategies based either on the VaR or the CTE,

the insurer is not willing to hedge large losses. Therefore, the optimal risk management strategy

1For the current stage of Solvency II we refer to extensive documents in http://www.solvency-2.com.
2The idea of CTE is to capture not only the probability to incur a high loss but also its magnitude. From a

theoretical perspective CTE is better than VaR (see Artzner et al. (1999), Inui and Kijima (2005)), and it has
been implemented to regulate some insurance products (with financial guarantees) in Canada (Hardy (2003)).
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involves insuring moderate losses more than large losses, which is consistent with the empirical

evidence of Froot (2001).

Third, our results offer some risk-sharing analysis in the reinsurance market. This analysis and

the methodology could be helpful for both insurers and insurance regulators to compare the

effects of imposing different risk constraints on insurers and to investigate which risk measure

is more appropriate.

This study is organized as follows. The next section describes the model and we derive the opti-

mal reinsurance contract under the VaR risk measure. The following section solves the optimal

reinsurance problems under other risk measures. Then we compare the optimal reinsurance

design with previous literature in which the firm behaves risk averse in other frameworks. We

finally compare the optimal reinsurance contracts under risk measures to contracts frequently

sold by reinsurers in the marketplace. The final section summarizes and concludes the study.

Proofs are given in appendix.

1 Optimal Reinsurance Design under VaR Measure

We consider an insurance company with initial wealth W0, which includes its own capital and

the collected premia from sold insurance contracts. Its final wealth, at the end of the period, is

Ŵ = W0 − X if no reinsurance is purchased, where X is the aggregate amount of indemnities

paid at the end of the period. The insurer is assumed to be risk-neutral and faces a risk of large

loss.

We assume that regulators require the insurer to meet some risk management requirement. As

an example, assume that ν is a Value-at-Risk (VaR) limit to the confidence level α, then the

VaR requirement for the insurer is written as:

P

{
W0 − Ŵ > ν

}
6 α. (1)

This probability P{W0 − Ŵ > ν} measures the insolvency risk. This type of risk management

constraint has been described explicitly in Solvency II.3

In a reinsurance market, the insurer purchases a reinsurance contract with indemnity I(X) from

a reinsurer, paying an initial premium P . If a loss X occurs, the insurance company’s final

wealth becomes W = W0−P−X+I(X). I(X) is assumed to be non-negative and can not exceed

the size of the loss. The final loss L of the insurance company is L = W0 −W = P +X − I(X),

a sum of the premium P and the retention of the loss X − I(X). The VaR requirement (1) is

formulated as P{L > ν} 6 α. It is equivalent to V aRL(α) 6 ν 4.

3Both parameters ν and α are often suggested by regulators.
4VaR is defined by V aRL(α) = inf{x, P{L > x} 6 α}.
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We assume the following premium principle P :

P = E[I(X) + C(I(X))] (2)

where the cost function C(.) is non-negative and satisfies C ′(·) > −1. Note that this assumption

is fairly general and include many premium principles as special cases. For instance, Arrow

(1963) assumes that the premium depends on the expected payoff of the policy only. Gollier

and Schlesinger (1996) consider a similar premium principle. Raviv (1979) considers a convex

cost structure while Huberman, Mayers and Smith (1983) introduce a concave cost structure.

The objective in this section is to search for a optimal indemnity I(X) under the constraint

(1).5 Precisely,

Problem 1.1 Find a reinsurance contract I(X) that minimizes insolvency risk:

min
I(X)

P{W < W0 − ν} s.t.

{
0 6 I(X) 6 X

E [I(X) + C(I(X)] 6 ∆
(3)

In Problem 1.1 the probability P{W < W0 − ν} can be written as an expected utility E[u(W )]

with a utility function u(z) = 1z<W0−ν . This utility function, however, is not concave. There-

fore, standard Arrow-Raviv first-order conditions (see Arrow (1963, 1971), Borch (1971), and

Raviv (1979)) are not sufficient to characterize the optimum. This remark also applies to

subsequent problems investigated in the paper.

Problem 1.1 can be motivated as follows. Note that E[W ] = W0 − E[X] − P + E[I(X)] =

W0 − E[X] − E[I(X) + C(I(X))] + E[I(X)]. Therefore,

E[I(X) + C(I(X))] 6 ∆ ⇐⇒ E[W ] > W0 − E[X] − ∆ + E[I(X)]. (4)

Then Problem 1.1 characterizes the efficient risk-return profile between the guaranteed expected

wealth and the insolvency risk measured by the probability that losses exceed the VaR limit.

To some extents, Problem 1.1 is similar to a safety-first optimal portfolio problem considered

by Roy (1952). The “safety first” criterion is a risk management technique that allows you

to select one portfolio over another based on the criteria that the probability of the return of

the portfolios falling below a minimum desired threshold is minimized. Roy (1952) obtains the

efficient frontier between risk and return, measured by the default probability and the expected

return, respectively. Figure 2 below displays this efficient frontier in our framework.

Minimizing the insolvency risk under VaR constraint, as stated in Problem 1.1, is important.

However, some other issues are not addressed in Problem 1.1. For instance, we ignore the inter-

ests of the debtholders (policyholders and bondholders) of the insurer. Even a small probability

5By the optimality in this paper we mean a Pareto-optimality. In the optimal insurance literature, there are
two separate concepts, one is to determine the optimal shape of the insurance contract and another one is to
find the optimal level of insurance. The optimal premium level, which is not addressed in this paper, can be
solved via a numerical search. See Schlesinger (1981), Meyer and Ormiston (1999).
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of default could lead to a huge loss of the debtholders. Therefore, the objective function in Prob-

lem 1.1 is not necessarily optimal to debtholders. The agency problem between the shareholder

and the managers is also overlooked in Problem 1.1. It is appropriate to view the objective

in Problem 1.1 as an optimal strategy for the managers as the unemployment risk naturally

follows from default risk 6. A more natural problem, from the shareholder’s perspective, is to

maximize the expected wealth subject to a VaR probability constraint, or subject to a limited

liability constraint (Gollier, Koehl and Rochet (1997)). The latter optimal risk management

problem in this context is more complicated than Problem 1.1. For example, Gollier, Koehl and

Rochet (1997) find that the limited liability firm is more risk-taking than the firm under full

liability. The problem of the shareholder is even harder if a probability constraint is imposed in

this expected utility framework7. Because we confine ourselves to a risk-neutral framework, the

discussion of those extended optimal reinsurance problems is beyond the scope of this paper.

Let S :=
{
P : 0 6 P < E

[
(X − ν + P )+ + C

(
(X − ν + P )+)]}

. The solution of Problem

1.1 is given in the following proposition.

Proposition 1.1 Assume X has a continuous cumulative distribution function8 and P ∈ S.

Let

IP (X) = (X + P − ν)+
1ν−P6X6ν−P+κP

, (5)

where κP > 0 satisfies E [IP (X) + C (IP (X))] = P. Define for P ∈ S, the probability that a loss

exceeds the VaR limit, L(P ) := P {X > ν − P + κP}. Then IP ∗(X) is an optimal reinsurance

contract of Problem 1.1 where P ∗ solves the static minimization problem

min
06P6∆

L(P ). (6)

The proof of Proposition 1.1 is given in Appendix. If, in particular, the VaR limit ν is set

to be the initial wealth W0, then Problem 1.1 is to minimize the ruin probability P{W < 0}.
This special case is solved by Gajek and Zagrodny (2004). Even though they discover the same

optimal shape, their construction of the optimal coverage is not explicit. The same minimal ruin

probability problem is also studied in Kaluszka and Okolewski (2008) under different premium

principles.

By Proposition 1.1, the optimal reinsurance coverage of Problem 1.1 involves a deductible for

small losses, and no insurance for large losses. We call it“truncated deductible”. This proposition

is intuitive appealing. Recall that Problem 1.1 minimizes the insolvency probability. The

6The emerging large default risk often leads to loss of confidence of the managers, significant drops of the
share price, pressure from directors and shareholders. All these factors make managers worry about their
employment status.

7We refer to Basak and Shapiro (2001), Boyle and Tian (2007), and Leippold, Trojani and Vanini (2006) for
similar problems in finance.

8We allow the case when there is a mass point at 0 meaning P(X = 0) can be positive.
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optimal contract must be one in which the indemnity on “bad” states are transformed to the

“good” states by keeping the premium (total expectation) fixed. Because reinsurance is costly,

it is optimal not to purchase reinsurance for the large loss states.

An important consequence of the non-concavity of the objective function in Problem 1.1 is that

the premium constraint E [I(X) + C(I(X))] 6 ∆ is not necessarily binding. In other words,

the probability L(P ) is not necessarily monotone, hence, the optimal premium P ∗ does not

necessarily satisfy the premium equation E [I(X) + C(I(X))] = ∆. This particular feature

of the optimal solution of Problem 1.1 is a surprise because, intuitively, the higher premium

should lead to smaller solvency probability. This property follows from the specific shape of

the truncated deductible indemnity. When the premium P increases, the deductible ν − P

decreases, but the limit ν − P + κP could increase or decrease.

To illustrate this notable feature, we present a numerical example as follows. Let W0 = 1000,

∆ = ν = W0

10
= 100, the loss X is distributed with the following density function:

f(x) =
2

ab
x1x6a +

(
2

b
+

2

b(b − a)
(a − x)

)
1a<x6b, (7)

where a = 25 and b = 250. The premium principle is P = (1 + ρ)E[I(X)] where ρ = 0.12 is the

loading factor. For P ∈ (0, ν), we solve the quantile q so that:

P

1 + ρ
= E

[
(X − (ν − P ))+

1X6q

]
. (8)

Then L(P ) is the probability of X to be more than q. Figure 1 displays a U-shape of the

probability function L(P ): L(P ) is first decreasing and then increasing with respect to the

premium P . Clearly, the optimum min06P6∆ L(P ) is not equal to ∆. In fact, the minimum is

attained when the optimal premium P
∗ is approximately equal to 74.
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Figure 1: Probability L(P ) w.r.t. P
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We now explain why the regulator’s risk measure constraint induces risk aversion to risk neutral

insurers. In our model it is optimal for a risk neutral insurer not to buy insurance in the absence

of regulators. When there exists a regulation constraint, the optimal insurance design is derived

as a truncated deductible. Figure 2 displays the trade-off between the expected return (through

the final expected wealth) with respect to the risk (measured by the confidence level α). Figure 2

shows that this trade-off shape is concave which resembles the trade-off between risk and return

for a risk-averse investor. This figure clearly implies that risk neutral insurance companies react

as risk-averse investors in the presence of regulators (this is an induced risk aversion 9).
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Figure 2: Expected Wealth w.r.t. the probability to exceed the VaR limit
Assume X = eZ where Z is a Gaussian random variable N (m,σ2) where m = 10.4 and σ = 1.1. W0 = 100, 000,
ρ = 0.15.

At last, we explain how our result is related to previous literature to finish the discussion of

this section. The dual problem of Problem 1.1 is to find the minimal possible premium such

that the insolvency probability is bounded by the confidence level α. Therefore, Proposition

1.1 also solves the dual problem by a truncated deductible contract. A variant of this optimal

reinsurance problem has recently been studied by Wang et al. (2005). In Wang et al. (2005),

the optimal reinsurance contract is the one that maximizes the expected wealth subject to the

probability constraint P{W > E[W ] − ν} > 1 − α, where the premium is (1 + ρ)E[I(X)].

Problem 1.1 is significantly different from the problem in Wang et al. (2005) in several aspects.

First, Wang et al. (2005) consider the deviation from the mean, W−E[W ], while a conventional

VaR concept is about the quantile of W − W0. Second,

W − E[W ] = (I(X) − E[I(X)]) − (X − E[X]) (9)

9Terminology proposed by Caillaud, Dionne and Jullien (2000) in another context.
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which is independent of the loading factor ρ. Consequently, the minimal insolvency probability

considered in Wang et al. (2005) is independent of the loading factor. Hence Proposition 1.1

can not derived from Wang et al. (2005) 10

2 Optimal Reinsurance under other Tail Risk Measures

We have explored the optimal reinsurance contract under VaR constraint. Adopting an optimal

reinsurance arrangement under VaR constraint, insurance companies choose to leave the worst

states uninsured. In this section we derive the optimal reinsurance contracts when other risk

measures are imposed. For simplicity of notations, we assume P = (1 + ρ)E[I(X)], where ρ is

a constant loading factor. Results of this section can be easily extended to the premium that

is a function of the actuarial value of the indemnity.

CTE Risk Measure

The motivation of CTE is to limit the amount of loss instead of its probability of occurrence

only. The optimal design problem under the conditional tail expectation can be stated as

follows.

Problem 2.1 Solve the indemnity I(X) such that

min
I(X)

{E [(W0 − W )1W0−W>ν ]} s.t.

{
0 6 I(X) 6 X

(1 + ρ)E [I(X)] 6 ∆
(10)

where the loss level ν is exogenously specified, not related to (1−α)-quantile of the loss. Problem

2.1 is consistent with the one investigated in Basak and Shapiro (2001).

Proposition 2.1 Assuming X has a continuous cumulative distribution function strictly in-

creasing on [0, +∞). Assume that P ∈ S, Let

Ic
P (X) = (X + P − ν)+

1ν−P6X6ν−P+λP
(11)

where λP > 0 satisfies that (1 + ρ)E [Ic
P (X)] = P. Let W c

P be the final wealth derived from

Ic
P (X). Then the indemnity Ic

P ∗(X) solves Problem 2.1, when P ∗ minimizes:

min
06P6∆

E
[
(W0 − W c

P )1W0−W c

P
>ν

]
(12)

10Moreover, some technical points have been overlooked by Wang et al. (2005) such as the fact that the VaR
constraint is binding when X has a continuous distribution which is not true as proved by Figure 1.
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The proof of Prop. 2.1 is similar to the one of Prop. 1.1 and omitted. Full details can be

obtained from authors upon request. Note that Ic
P (X) is the same as IP (X) of Prop. 1.1 for a

linear premium principle. Then λP = κP . However the optimal P ∗ in both Prop. 1.1 and 2.1

are different because of different objective functions in the second stage of the solution. Hence

the script “c” is used to denote the CTE constraint for short.

In the presence of a CTE constraint, Prop. 2.1 shows that a risk neutral insurer behaves

similarly as under a VaR constraint. Insurers have no incentive to protect themselves against

large losses under the conditional tail expectation’s constraint. This result seems unexpected

because people often argue that CTE is better than VaR (see Basak and Shapiro (2001), Artzner

et al. (1999)). The intuition is as follows. In terms of the loss variable L = W0 − W , Problem

2.1 solves

min
L

E[L1L>ν ] (13)

subject to P 6 L 6 P + X. Therefore, the objective is to investigate the trade-off between the

amount L and the probability P{L > ν}. Because E[L] is fixed, the indemnity is small (resp.

large) on “bad” states that occur with small probabilities (resp. on “good” states that have a

high probability of occurence). The optimal indemnity is to have small loss on “good” states,

and large loss on “bad” states.

Both Prop. 1.1 and Prop. 2.1 are partially consistent with the empirical findings of Froot

(2001). Froot (2001) finds that most insurers purchase relatively little reinsurance against

catastrophes’ risk. Precisely, the reinsurance coverage as a fraction of the loss exposure is very

high above the retention (for the medium losses), and then declines with the size of the loss

(See Figure 2 in Froot (2001) for details). Arrow’s optimal insurance theory implies that this

kind of reinsurance contract is not optimal. Froot (2001) provides a number of possible reasons

for these departures from theory. Prop. 1.1 and Prop. 2.1 present another explanation of the

excess-of-loss layer feature of the reinsurance coverage.

We have mentioned the limitation of Problem 1.1 in last section. Indeed, the model is somewhat

too simple to fully explain the design of real insurance contracts regarding large losses. Optimal

contracts derived above are also subject to moral hazard since companies might partly hide their

large losses. An extension of our model to include the interests of debtholders may be able to

overcome these difficulties. In fact, in the presence of asymmetric information, debtholders

(policyholders and bondholders) of the insurance company would dislike the contract described

in Prop. 1.1 and Prop. 2.1, they would either refuse to participate or require a risk premium

to participate. Therefore policyholders ask for a smaller insurance premium and debtholders

require larger interests. Hence, the presence of asymmetric information can at least partially

justify the fact that insurers purchase coverage for large losses. Since this paper focuses on the

effects of the regulatory constraint, we do not model the asymmetric information. Rather, we

wonder whether there is any risk measure leading to other type of optimal reinsurance design.

In the next subsection, we show that a stronger regulatory requirement may provide incentives

to purchase insurance against large losses.
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Emphasize the Right Tail Distribution

We now consider a risk measure which based on the expected square of the excessive loss. This

risk measure is related to the variance tail measure and thus useful when the variability of the

loss is large 11. Precisely,

Problem 2.2 Find the optimal indemnity I(X) that solves:

min
I(X)

{
E

[
(W0 − W − ν)2

1W0−W>ν

] }
s.t.

{
0 6 I(X) 6 X

(1 + ρ)E [I(X)] 6 ∆
(14)

The objective of Problem 2.2 is to minimize the square of excess loss. Comparing with CTE,

this risk measure E [(W0 − W − ν)2
1W0−W>ν ] pays more attention on the loss amount over the

loss states {W0 − W > ν}. Then, it is termed as “expected square of excessive loss measure”.
12

Proposition 2.2 Assume X has a continuous cumulative distribution function strictly increas-

ing on [0, +∞) and P ∈ S. Let dP be the deductible level whose corresponding premium is P .

Then the solution of Problem 2.2 is a deductible indemnity (X − dP ∗)+, where P ∗ solves the

following minimization problem:

min
06P6∆

E
[
(W0 − WP − ν)2

1W0−WP >ν

]
(15)

where WP is the corresponding wealth of purchasing the deductible (X − dP )+.

By contrast with Prop. 1.1 and 2.1, Prop. 2.2 states that deductibles are optimal when a

constraint on the expected square of excessive loss is imposed. Let us briefly explain why this

is the case. In term of the loss L = W0 − W , this problem becomes:

minE[L2
1L>ν ] (16)

subject to E[L] is fixed and P 6 L 6 P + X. In contrast with Problem 2.1, the objective

function in Problem 2.2 involves the square of L which dominates the premium constraint E[L].

Then, intuitively, the optimal indemnity should minimize the loss W0−W over the bad states as

small as possible. Hence the optimal indemnity is deductible. Prop. 2.2 verifies this intuition.

The intuition of Proposition 2.2 can also be found in Gollier and Schlesinger (1996). Gollier and

Schlesinger (1996) consider the optimal insurance contract under the second order stochastic

dominance approach. By ignoring the “bad scenarios” {W0 − W > v}, or when v goes to

infinity, Problem 2.2 is in essence to minimize a convex utility, or equivalently, maximize a

11For more details on this risk measure we refer to Furman and Landsman (2006).
12This measure is not a coherent risk measure in the sense of Artzner et al. (1999).
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concave utility. Hence the deducible is optimal when v is extremely high. However, Proposition

2.2 does not follow from Gollier and Schlesinger (1996) directly, because of the non-convex and

non-concave feature of E[x2
1x>ν ].

13

3 Optimal Indemnity with Financing Imperfections

We have shown that risk neutral insurers behave risk averse because of the enforcement of risk

measure constraints. The profile of the optimal reinsurance contract depends on how the risk

control policy is requested and implemented. Other factors, mentioned earlier in the literature,

contribute to the risk averse attitude of risk neutral insurance companies.

Froot, Scharfstein and Stein (1993) consider a value-maximizing company facing financing im-

perfections increasing the cost of the raising of external funds. The imperfections include cost

of financial distress, taxes, managerial motives or other capital market imperfections. Under

fairly general conditions on the loss X, Froot, Scharfstein and Stein (1993) prove that the value

function U(W ) (where W is the internal capital) is increasing and concave. Therefore, the

risk neutral firm behaves like a risk averse individual with concave utility function U(·). The

deductible indemnity is then optimal (Arrow (1963)). Hence, the optimal reinsurance contract

in Froot, Scharfstein and Stein (1993)’s framework is a deductible.

Caillaud, Dionne and Jullien (2000) examine the problem from a different angle by rationalizing

the use of insurance covenants in financial contracts, say corporate debts. In Caillaud, Dionne

and Jullien (2000), external funding for a risky project can be affected by an accident during

its realization. Since accident losses and final returns are private information and can be costly

evaluated by outside investors, the optimal financial contract must be a bundle of a standard

debt contract and an insurance contract which involves full coverage above a straight deductible.

Hence, small loss is not insured because of the auditing costs and the bankruptcy costs.

Figure 3 displays the optimal insurance contract based on either regulatory constraints or costly

external funding. On Figure 3, the two indemnities have the same actuarial value, thus the

same premium. The truncated deductible indemnity is optimal for VaR or CTE constraints,

while the deductible indemnity is optimal for either the square of the expected loss risk measure

or voluntary risk management.

The above mentioned literature show that external financing generates insurance demand by risk

neutral firms. This amounts to comparing effects of enforcement of regulatory risk constraints

and voluntary risk management (to increase firm value). We now compare the risk measure

constraint and the voluntary risk management policy. In all possible cases, small losses stay

uninsured. But there are significant differences on medium losses and large losses. VaR or

a CTE constraints are not enough to induce insurers to protect themselves against large loss

amounts. Strong risk control such as the square of the expected loss risk measure provide

13The proof is similar to that of Prop. 1.1. Full details to prove Prop. 2.2 can be obtained from authors upon
request.
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Figure 3: Comparison of reinsurance contracts.
Reinsurance indemnity I w.r.t. the loss X

incentive to insured large loss, hence the optimal indemnity under this risk measure is identical

with the one under voluntary risk management policy.

Regulatory requirement and firm’s risk management policy lead to different protection (or

hedging) strategy. VaR and CTE risk management policies provide a better protection on

moderate losses. If the company only implement the enforced constraint without doing a risk

averse risk management, it will benefit on average until a large loss occurs. The enforcement

of VaR and CTE regulations will be efficient only in the presence of an additional voluntary

firm’s risk management program.

4 Reinsurance and Capital Market

We now look at the traditional reinsurance policies in the market place. In this section, we first

compare our results to traditional reinsurance policies, then interpret reinsurance arrangements

as a derivatives portfolio written on a loss index.

We find that the optimal reinsurance contract is not available in the reinsurance market due to

moral hazard issues. However, the optimal strategy under VaR can possibly be implemented

in the capital market, as soon as a reference index strongly correlated to the insurer’s loss is

traded.

Froot (2001) underlines that most reinsurance arrangements are “excess-of-loss layers” with a

retention level (the deductible level that losses must exceed before coverage is triggered), a limit

(the maximum amount reimbursed by the reinsurer) and an exceeding probability (probability

losses are above the limit). The contract is written as:

I1(X) = (X − d)+ − (X − l)+. (17)

11



where d is the deductible level, l stands for the upper limit of the coverage. This kind of contract

is typical by involving a stop loss rule with an upper limit on coverage 14.

In the presence of regulatory VaR or CTE requirements, the optimal reinsurance arrangement

is a truncated deductible, I(X) = (X − d)1X∈[d,q] where d is the deductible level and q the

upper limit. Then the indemnity could be expressed as:

I(X) = (X − d)+ − (X − q)+ − (q − d)1X>q. (18)

Figures 4 illustrates a comparison of these two designs with arbitrary parameters.
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Figure 4: Indemnity I(X) w.r.t. X

We compare the optimal contract and the deductible with an upper limit. On Figure 4, the

plain line corresponds to the optimal contract under a VaR constraint and the dash line is the

capped contract. They have the same premium P , so the coverage provided by the optimal

contract is better for moderate losses but worse for extreme losses.

The difference between the indemnity I1(X) and I(X) is an indemnity (q − d)1X>q, which

introduces some moral hazard issues. This kind of reinsurance contract with indemnity I(X)

is thus not easy to sell in the traditional reinsurance marketplace. But, Moral hazard can

be reduced by a coinsurance treaty (see for instance Cummins, Lalonde and Phillips (2004)).

Moreover, the loss can also be written on a so-called loss index (see Cummins, Doherty and

Lo (2002) for details). It avoids manipulation of the loss variable and indemnities can then

be viewed as a portfolio of derivatives. For example, I(X) is a long position on a call and a

short position on a put and on a barrier bond. In this case, (q − d)1X>q can be viewed as a

barrier bond which is activated when the underlying loss X is above q. Our theoretical results,

Propositions 1.1 and 2.1, show that it is optimal for the insurance company to sell the barrier

14Policies with upper limit on coverage could be derived from minimizing some risk measures under a mean
variance premium principle. See Cummins and Mahul (2004).
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bond corresponding to the right tail risk. Hence, I(X) is attainable in an available capital

market.

Conclusions

In this paper we derive the design of the optimal reinsurance contract to maximize the expected

profit when the regulatory constraints are satisfied. We show that insurance companies have no

incentives to protect themselves against extreme losses when regulatory requirements are based

on Value-at-Risk or Conditional Tail Expectation. These results may partially confirm observed

behaviors of insurance companies (Froot (2001)). Furthermore, we show that an alternative risk

measures would lead insurance companies to fully hedge the right tail of the loss distribution.

The model in this paper is quite simple. There are no transaction cost for issuing and purchasing

reinsurance contracts, no background risk, and a single loss during the period of insurance

protection. Moreover both issuer and issued are risk neutral, both parties have symmetric (and

perfect) information about the distribution of the loss. Even with the previously mentioned

model limitations, the results of this paper could still be used as “prototypes” by insurance

companies to design optimal risk management strategies, as well as by regulators to impose

appropriate risk measures. Because of the similarities between the reinsurance market and the

capital market, our results also present alternative risk transfers mechanisms in the capital

market.
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Proof of Proposition 1.1

Recall that final wealth W is given by W = W0−P −X +I(X). Then, the event {W > W0−ν}
is the same as {I(X) > P + X − ν} in terms of the coverage I(X). The first step is to derive
the optimal reinsurance coverage when the premium is fixed (Problem .1 below). In the second
step Problem 1.1 is reduced to a sequence of Problem .1. As we have discussed in the main
body of the text, the rationale of this approach follows from the property that L(P ) is not
monotone, consequently, the premium constraint is not necessary binding.

Problem .1 Find the optimal reinsurance indemnity such that

min
I(X)

P{W < W0 − ν} s.t.

{
0 6 I(X) 6 X

E [I(X) + C(I(X))] = P

Equivalently, Problem .1 is reformulated as follows.

max
I(X)

P{I(X) > P + X − ν} s.t.

{
0 6 I(X) 6 X

E[I(X) + C(I(X))] = P

Lemma .1 If Y ∗ satisfies the three following properties:
(i) 0 6 Y ∗ 6 X,
(ii) E [Y ∗ + C (Y ∗)] = P ,
(iii) There exists a positive λ > 0 such that for each ω ∈ Ω, Y ∗(ω) is a solution of the following
optimization problem:

max
Y ∈[0,X(ω)]

{
1P+X(ω)−ν6Y − λ(Y + C(Y ))

}

then Y ∗ solves the optimization problem .1.

Proof. Given a coverage I which satisfies the constraints of the optimization problem .1. There-
fore, using (iii), we have,

∀ω ∈ Ω, 1P+X(ω)−ν6Y ∗ − λ(Y ∗ + C(Y ∗)) > 1P+X(ω)−ν6I(ω) − λ(I(ω) + C(I(ω)))

Thus,

1P+X(ω)−ν6Y ∗(ω) − 1P+X(ω)−ν6I(ω) > λ (Y ∗(ω) + C(Y ∗(ω)) − I(ω) − C(I(ω))) .

We now take the expectation of this inequality. Therefore by condition (ii) one obtains,

P{P + X − ν 6 Y ∗} − P{P + X − ν 6 I} > λ (P − E [I + C(I)])

Therefore, applying the constraints of the variable I, E[I(X) + C(I(X))] = P ,

P{P + X − Y ∗
> ν} − P{P + X − I > ν} > 0

14



The proof of this lemma is completed. �

Lemma .2 When P 6 ν, each member of the following family {Yλ}λ>0 satisfies the conditions
(i) and (iii) of Lemma .1.

Yλ(ω) =






0 if X(ω) < ν − P

X(ω) + P − ν if ν − P 6 X(ω) 6 ν − P + D
(

1
λ

)

0 if X(ω) > ν − P + D
(

1
λ

)

where D is the inverse of y → y + C(y).

Proof. The property (i) is obviously satisfied. Indeed we only study the case when ν is more
than the premium P .

First, if X(ω) < ν−P , then P +X(ω)−ν < 0, the function to maximize over [0, X(ω)] is equal
to 1− λ(Y + C(Y )), decreasing over the interval [0, X(ω)] (since C ′(·) > −1), the maximum is
thus obtained at Y ∗(ω) = 0.

Otherwise, X(ω) > ν − P . Since P 6 ν, one has P + X(ω) − ν 6 X(ω). We consider two
cases: firstly, if Y ∈ [0, P + X(ω) − ν), then the function to maximize is −λ(Y + C(Y )). It is
decreasing with respect to the variable Y . Its maximum is 0, obtained at Y = 0. Secondly, if
Y ∈ [P +X(ω)−ν,X(ω)], then the function to maximize is 1−λ(Y +C(Y )). It is decreasing. Its
maximum is obtained at Y = P +X(ω)−ν and its value is 1−λ(P +X(ω)−ν+C(P +X(ω)−ν)).
We compare the value 1 − λ(P + X(ω) − ν + C(P + X(ω) − ν)) and 0 to decide whether the
maximum is attained at Y = X(ω) + P − ν or Y = 0.

1 − λ(P + X(ω) − ν + C(P + X(ω) − ν)) > 0 ⇔ P + X(ω) − ν + C(P + X(ω) − ν) 6
1

λ
.

Let D = (Y + C(Y ))−1 that exists since Y + C(Y ) is increasing, then:

X(ω) 6 ν − P + D

(
1

λ

)
.

Lemma .2 is proved. �

Proof of Proposition 1.1 Thanks to lemmas .1 and .2, it suffices to prove that there exists
λ > 0 such that Yλ defined in lemma .2 satisfies the condition (ii) of lemma .1. We then compute
its associated cost function.

Eλ := E

[
(X + P − ν)1

X∈[ν−P,ν−P+D( 1

λ
)] + C

(
(X + P − ν)1

X∈[ν−P,ν−P+D( 1

λ
)]

)]
.

It is obvious then:

lim
λ→0+

Eλ = E
[
(X − ν + P )+ + C

(
(X − ν + P )+)]

, lim
λ→+∞

Eλ = 0.

By Lebesgue dominance theorem we can easily prove the convergence property of Eλ with
respect to the parameter λ. Then the existence of a solution λ∗

P ∈ R
∗

+ such that Eλ = P comes
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from the assumption on the continuous distribution of X and thus the continuity of Eλ. Thus
we have proved the first part of this Proposition. The second part follows easily from the first
part. �

Proposition 2.1

The solution of Problem 2.1 consists of two steps. We first solve Problem 2.1 by fixing the
premium, reducing it to Problem .2 below.

Problem .2 Solve the indemnity such that

min
I(X)

{E [(W0 − W )1W0−W>ν ]} s.t.

{
0 6 I(X) 6 X

(1 + ρ)E [I(X)] = ∆

Equivalently, Problem 2.1 is to minimize E [(P + X − I)1P+X−I>ν ] subject to the same con-
straints. Because of the linear premium principle, for the sake of simplicity we ignore the loading
factor in the remainder proofs of Appendix A.

Lemma .3 If Y ∗ satisfies the three following properties:
(i) 0 6 Y ∗ 6 X,
(ii) E [Y ∗] = ∆,
(iii) There exists a positive λ > 1 such that for each ω ∈ Ω, Y ∗(ω) is a solution of the following
optimization problem:

min
Y ∈[0,X(ω)]

{
(P + X(ω) − Y )1Y <P+X(ω)−ν + λY

}

then Y ∗ solves Problem .2.

Proof. The proof of Lemma .3 is similar to the proof of Lemma .1. �

Proof of Proposition 2.1: We use Lemma .3 and show that for λ > 1,

Yλ(ω) =






0 if X(ω) < ν − P

X(ω) + P − ν if ν − P 6 X(ω) 6 ν − P + ν
λ−1

0 if X(ω) > ν − P + ν
λ−1

satisfies conditions (i) and (iii) of Lemma .3. If X(ω) + P − ν < 0 then Y ∗ = 0. Otherwise 0 6

P +X(ω)−ν < X. Similar to the proof of Proposition 1.1 we can prove that Y = P +X(ω)−ν

is the maximum one if ν − P 6 X(ω) 6 ν − P + ν
λ−1

, else the maximum one is Y = 0 if
X(ω) > ν − P + v

λ−1
.

Let

Eλ := E

[
(X + P − ν)1

X∈(ν−P,ν−P+ ν

λ−1)

]
.
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It is obvious then:
lim

λ→1+
Eλ = E

[
(X − ν + P )+]

, lim
λ→+∞

Eλ = 0.

The existence of a solution λ∗ > 1 such that Eλ = ∆ follows from the assumption on the
continuous distribution of X and thus the continuity of Eλ. Therefore, we have proved the first
part of Proposition 2.1. The second part follows easily from the first part. �

Proposition 2.2

Problem .3 Find the optimal indemnity that solves:

min
I(X)

{
E

[
(W0 − W − v)2

1W0−W>ν

] }
s.t.

{
0 6 I(X) 6 X

E [I(X)] = ∆

Lemma .4 If Y ∗ satisfies the three following properties:
(i) 0 6 Y ∗ 6 X,
(ii) E [Y ∗] = ∆,
(iii) There exists a positive λ > 0 such that for each ω ∈ Ω, Y ∗(ω) is a solution of the following
optimization problem:

min
Y ∈[0,X(ω)]

{
(P + X(ω) − Y − ν)2

1Y <P+X(ω)−ν + λY
}

then Y ∗ solves Problem .3.

Proof. Let Y ∗ be a random variable satisfying the three above conditions of the lemma. On
the other hand, given another available payoff I which satisfies the constraints of the above
optimization problem. Therefore, using (iii), we have, ∀ω ∈ Ω,

(P + X(ω) − Y ∗(ω) − ν)2
1Y ∗(ω)<P+X(ω)−ν + λY ∗(ω) 6

(P + X(ω) − I(ω) − ν)2
1I(ω)<P+X(ω)−ν + λI(ω)

Thus,

(P + X(ω) − Y ∗(ω) − ν)2
1Y ∗(ω)<P+X(ω)−ν − (P + X(ω) − I(ω) − ν)2

1I(ω)<P+X(ω)−ν

6 λ (I(ω) − Y ∗(ω))

We now take the expectation of the above inequality, therefore by condition (ii) one obtains,

E
[
(P + X − Y ∗ − ν)2

1Y ∗<P+X−ν

]
− E

[
(P + X − I − ν)2

1I<P+X−ν

]
6 λ (E[I] − ∆)

Therefore, applying the constraints of the variable I, E[I(X)] = ∆,

E
[
(P + X − Y ∗ − ν)2

1Y ∗<P+X−ν

]
6 E

[
(P + X − I − ν)2

1I<P+X−ν

]
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The proof of this lemma is completed. �

Lemma .5 When P 6 ν, each member of the following family {Yλ}λ>0 satisfies the conditions
(i) and (iii) of Lemma .4.

Yλ(ω) =

{
0 if X(ω) < ν − P + λ

2

X(ω) + P − ν − λ
2

if ν − P + λ
2

6 X(ω)

Proof. The property (i) is obviously satisfied. We now prove the property (iii).

First, if X(ω) < ν−P , then P +X(ω)− v < 0, the function to minimize over [0, X(ω)] is equal
to λY , increasing over the interval [0, X(ω)], the minimum is thus obtained at Y ∗(ω) = 0.

Otherwise, X(ω) > ν − P . Since P 6 ν, one has P + X(ω) − ν 6 X(ω). Thus we have to
solve the optimization problem under the assumption 0 6 P + X(ω) − ν 6 X(ω). There are
two cases: firstly, if Y ∈ [0, P + X(ω) − ν), then the function to minimize is

φ1(Y ) = (P + X(ω) − ν − Y )2 + λY.

Its minimum is max
(
0, X(ω) + P − ν − λ

2

)
. Secondly, if Y ∈ [P + X(ω) − ν,X(ω)], then the

function to minimize is
φ2(Y ) = λY.

Its minimum is obtained at Y = P + X(ω) − ν and its value is λ(P + X(ω) − ν). We then
compare this value with the previous minimum:

• When 0 < X(ω) + P − ν − λ
2
, Φ1

(
X(ω) + P − ν − λ

2

)
= Φ2(P + X(ω) − ν) − λ2

4
<

Φ2(P + X(ω) − ν).

• When 0 > X(ω)+P −ν− λ
2
, Φ1(0) = (P +X(ω)−ν)2. Since λ

2
> X(ω)+P −ν, Φ1(0) <

Φ2(P+X(ω)−ν)
2

< Φ2(P + X(ω) − ν).

Obviously, the minimum is thus obtained when Y = max
(
0, X(ω) + P − ν − λ

2

)
. Lemma .5 is

proved. �

Proof of Proposition 2.2.

Thanks to both Lemmas .4 and .5, one only has to prove that there exists λ > 0 such that Yλ

defined in Lemma .5 satisfies the condition (ii) of Lemma .4. We then compute its expectation.

Eλ := E

[(
X + P − ν −

λ

2

)
1

X∈[ν−P+λ

2
,+∞)

]
.

We see that
lim

λ→0+
Eλ = E

[
(X − ν + P )+]

, lim
λ→+∞

Eλ = 0.

The existence of a solution λ∗ ∈ R
∗

+ such that Eλ = ∆ comes from the assumption on the
continuous distribution of X and thus the continuity of Eλ. Thus we have proved the first part
of this Proposition. The second part follows easily from the first part. �
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