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Abstract. This paper provides a new approach for pricing and hedging popular highly path-
dependent equity-linked contracts. We illustrate our technique with two examples: the locally-capped
contracts (a popular design on the exchange-listed retail investment contracts on the American
Stock Exchange) and the Cliquet option (extensively sold by insurance companies). Wilmott [17]
describes these types of contracts as the “height of fashion in the world of equity derivatives”.
Existing literature proposes methods based on partial differential equations, Monte Carlo techniques
or Fourier analysis. We show that there exist semi-closed-form expressions of their prices as well as
of the hedging parameters.
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1. Introduction. This paper provides analytic formulas for the prices and hedg-
ing parameters of popular equity-linked contracts that are highly path-dependent.
We illustrate our technique with two examples: the locally-capped contracts (popu-
lar design on the exchange-listed retail investment contracts on the American Stock
Exchange, see Bernard, Boyle and Gornall [2]) and the Cliquet option (extensively
sold by insurance companies, see (Palmer [16])). Wilmott [17] describes these types
of contracts as the “height of fashion in the world of equity derivatives”. Numerical
partial differential equations techniques have been developed to price cliquet options
by Windcliff, Forsyth, and Vetzal [18] and Wilmott [17]. Monte Carlo techniques have
been used by Bernard, Boyle and Gornall [2]. In this paper, we derive semi-closed-
form expressions of the prices and Greeks of these types of contracts. We make use of
techniques that have been applied in other contexts by Haagerup [6], Konig, Schutt
and Tomczak-Jaegermann [7] and Li and Wei [11, 12].

In this paper we study a “cliquet option” and a specific locally capped contract
called “monthly sum cap”. These contracts are used for the sake of illustration and
our techniques apply to a wide range of path-dependent contracts with payoffs based
on periodical returns over the contracts’ term. A “monthly sum cap” contract is a
type of equity indexed annuities (EIA) which are customized investment products
sold by insurance companies that provide savings and insurance benefits. In a typi-
cal equity indexed annuity (also called structured product when sold by banks), the
investor pays an initial amount to the financial institution or the insurance company.
At the maturity date, the payoff to the investor is based on the performance of some
designated reference index. The contract participates in the gains (if any) in the ref-
erence index during this period. The detailed arrangements of how this participation
is calculated vary but invariably there is some limit. For example, the limit may be
expressed in terms of a participation rate (say 60%) in the return of the underlying
index. Alternatively, the return on the reference portfolio can be capped where the
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2 PRICING AND HEDGING CLIQUET OPTIONS

cap is imposed periodically or globally. In addition, these contracts generally provide
a floor of protection if the market does poorly.

There are many different ways of computing the crediting rate. In the so-called
“point-to-point design”, the payoff is linked to the rate of return on the underlying
index over the term of the contract. The payoff is not path-dependent and closed-
form formulas can often be obtained. Our study focuses on the locally-capped design.
For example in a “monthly sum cap”, the credited rate is based on the sum of the
monthly-capped rates. This product is a typical example of globally-floored locally-
capped contract since it is monthly-capped and usually has a guarantee (global floor)
over the life of the contract (See for example Bernard, Boyle and Gornall [2] and
Bernard and Boyle [1] for more details on these financial securities). The payoff of
this index-linked contract is given by

XT = Kmax

(
1 + g, 1 +

n∑
k=1

min

(
c,
S(tk)− S(tk−1)

S(tk−1)

))
, (1.1)

where tk = kΔ with nΔ = T , K is the initial investment net of fees and commissions,
g the guaranteed rate at maturity, S(t) denotes the price of the underlying index at
time t and c ≥ 0 is the local cap for each period ti − ti−1.

These monthly sum cap contracts are similar to the cliquet options studied for
instance by Wilmott [17]. For example the payoff of a “minimum coupon cliquet” is
given by

YT = Kmax

(
1 + g, 1 +

n∑
k=1

max

(
0,min

(
c,
S(tk)− S(tk−1)

S(tk−1)

)))
. (1.2)

Note that the return of each period is capped at c but also has a local floor equal
to 0. This design is also very popular in the insurance industry since most insurance
EIAs include annual guarantees in addition to the designs described earlier. Annual
guarantees result in a cliquet-style final payoff.

Section 2 exposes the financial market model and presents the two contracts
under study. Section 3 provides the formulas for their prices and hedging parameters
in a general arbitrage-free market. Section 4 illustrates our findings through some
numerical examples in the Black and Scholes framework and in a Lévy market model.

2. Market Model Assumptions . In this section we introduce the notation
for the financial market and for the two contracts under study.

2.1. Financial Model. Consider an arbitrage-free market. Let Q be the risk-
neutral probability used for pricing in this market. The price at the initial time 0 of a
financial derivative with payoff XT paid at time T is given by e−rT

E [XT ], where the
expectation is taken under this risk-neutral probability Q and where we suppose that
the risk-free rate r is constant. The derivations in the paper require the stationarity
and the independence of the increments of the underlying process. Stochastic interest
rates may be added as long as their presence does not affect the stationarity and
the independence properties. The financial contracts under study are both linked to
periodical returns (see payoffs (1.1) and (1.2)). To simplify the notation, we denote
by Rk the return of the underlying stock over the kth period.

Rk =
S(tk)− S(tk−1)

S(tk−1)
. (2.1)
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We assume that the discretization steps are equally spaced (∀k, tk − tk−1 = Δ).
In addition we suppose that increments of the underlying process are independent and
identically distributed, which is the case for instance in the Black and Scholes model
but also when the underlying asset S is modeled by a Lévy process. In section 4, we
derive an example in the Black and Scholes model and then present how to extend it
in a more general Lévy market model.

To derive semi-closed-form expressions for monthly sum cap contracts and cliquet
options, we only need the distribution of Rk, specifically the survival function (e.g.
Black-Scholes market) or its characteristic function (e.g. Lévy market) as it appears
later in the derivations. We further assume that Rk is continuously distributed with
density fR(·) and characteristic function φR under the risk-neutral probability. Note
that the distribution does not depend on k because returns are i.i.d. In a Black
and Scholes market, Rk follows a lognormal distribution with constant parameters.
With Lévy processes this distribution is more complicated but can still be computed.
Examples are given in Section 4.

2.2. Payoffs of the Monthly Sum Cap and the Cliquet Option. We de-
note by XT the payoff of a monthly sum cap. The contract is of European type since
the payoff is paid at a fixed future maturity time T . The payoff XT is given by

XT = Kmax

(
1 + g, 1 +

n∑
k=1

min (c, Rk)

)

= K(1 + g) +Kmax

{
0,

n∑
k=1

Ck

}
(2.2)

where the quantity Ck is defined by

Ck := min (c, Rk)− g/n. (2.3)

The payoff of the cliquet option is denoted by YT and can be expressed as

YT = Kmax

(
1 + g, 1 +

n∑
k=1

max (0,min (c, Rk))

)

= K(1 + g) +Kmax

{
0,

n∑
k=1

Zk

}
(2.4)

where Zk is defined by

Zk := max (0,min (c, Rk))− g/n. (2.5)

As it turns out from the above simplification, the payoff of the locally-capped contract
given by (2.2) is now very similar to the payoff of the cliquet option given by (2.4).
Thus we can treat them in a similar way.

3. Pricing Formulas and Greeks.

3.1. Prices. We need to calculate the expectation of the discounted payoffs
(2.2) and (2.4) under the risk-neutral probability measure to obtain semi-closed-form
expressions of the prices of the two financial contracts under study. Precisely, we need
to calculate the following expectation:

E max

(
0,

n∑
k=1

Lk

)
, (3.1)
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where Lk are i.i.d. random variables. Lk is equal to Ck for the locally-capped contract
and to Zk for the cliquet option. Since Lk are identically distributed, their distribution
does not depend on k and we can denote by φL their characteristic function. We will
denote respectively by φC and φZ the characteristic functions of Ck and Zk.

Proposition 3.1. The price at time 0 of a payoff max (0,
∑n

k=1 Lk) paid at time
T is given by

ne−rT

2
EL1 +

e−rT

π

∫ +∞

0

t−2 (1−Re (φn
L(t))) dt.

Proof. Note that

max(0, x) =
x+ |x|

2
, (3.2)

where we replace x by
∑n

k=1 Lk. It is thus equivalent to look for the expectation of
the absolute value instead of looking directly at the maximum. We make use of the
following useful representation for the absolute value

|x| = 2

π

∫ +∞

0

1− cos(xt)

t2
dt =

2

π

∫ +∞

0

1− E ε

[
eixtε

]
t2

dt, (3.3)

where ε = ±1 is a Rademacher random variable, i.e. P (ε = ±1) = 1/2. This equality
can be easily seen by simple substitution. Other use of (3.3) can be found in Haagerup
[6], Konig, Schutt and Tomczak-Jaegermann [7] and Li and Wei [11, 12]. Thus,

ΘL := E

∣∣∣∣∣
n∑

k=1

Lk

∣∣∣∣∣ (3.4)

=
2

π

∫ +∞

0

1

t2

(
1− E εE L

[
eitε(

∑n
k=1 Lk)

])
dt

=
2

π

∫ +∞

0

t−2(1− E εφ
n
L(tε))dt

=
2

π

∫ +∞

0

t−2(1−Re (φn
L(t)))dt, (3.5)

where interchange of integrations follows from positivity of the integrant and the
boundness of eixtε. The price of max (0,

∑n
k=1 Lk) is then obtained using (3.2) to

replace the maximum by the absolute value. The calculation of the expected absolute
value corresponds to the above calculation ΘL. Proposition 3.1 follows. �

Direct substitution of L by respectively C and Z yields the following result.
Proposition 3.2. The price at time 0 of the monthly sum cap is given by

K(1 + g)e−rT + 2−1Ke−rT (ΘC + nEC1) (3.6)

where

ΘC =
2

π

∫ +∞

0

t−2(1−Re (φn
C(t)))dt. (3.7)

and the price at time 0 of the cliquet option is equal to

K(1 + g)e−rT + 2−1Ke−rT (ΘZ + nEZ1) (3.8)
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where

ΘZ =
2

π

∫ +∞

0

t−2(1−Re (φn
Z(t)))dt. (3.9)

3.2. Greeks. Knowing formulas (3.6) and (3.8) for the prices of these highly
path-dependent securities, we are now able to calculate the derivatives of these prices
with respect to the different financial parameters, such as the interest rate r (Theta
of the option), the volatility σ (Vega of the option) or with respect to the initial stock
price S0 (Delta of the option). After a careful look at the formulas (3.6) and (3.8),
one can notice that prices at time 0 do not depend on S0, therefore the delta is equal
to 0 (as well as the gamma that stands for the second derivative with respect to S0).
In fact cliquet options are very sensitive to the volatility parameter. The vega is
therefore an important greek to study.

Vega
. The vega can be obtained by differentiating (with respect to σ) the prices of the
monthly sum cap and the Cliquet option.

Proposition 3.3. The vega of the monthly sum cap and of the Cliquet option
are given by differentiating their respective prices with respect to the parameter σ

Vega at time 0 =
∂

∂σ
(Price) =

KerT

2

(
∂

∂σ
ΘL + n

∂

∂σ
EL

)
, (3.10)

where L should be replaced by C in the case of the monthly sum cap and by Z in the
case of the cliquet option and where

∂

∂σ
ΘL =

1

π

∫ +∞

0

(−1)

t2
· ∂

∂σ
(φn

L(t) + φn
L(−t)) dt. (3.11)

Proof. We can write Re(φn
L(t)) = (φn

L(t) + φn
L(−t))/2 in (3.5) and then take

partial derivative with respect to σ. The interchange of integration and differentiation
is justified by the positivity of the integrant. Note that there is no singularity at zero
for the integrant since φL(t) = 1 + h(σ)t+ O(t2) for some h(σ) as t → 0, and

φn
L(t) + φn

L(−t) = (1 + nh(σ)t+O(t2)) + (1− h(σ)t +O(t2)) = 2 +O(t2).

3.3. Implementation. The analytic formulas obtained for these contracts’ prices
and greeks (see (3.6), (3.8) and (3.10)) are functions of ΘC and ΘZ given by (3.7) and
(3.9) which involve the characteristic functions φC of Ck and φZ of Zk. Therefore, one
needs to know the distribution of Ck and of Zk. Denote by R, one of the identically
distributed returns Rk defined by (2.1).

Lemma 3.4 (Distribution of Ck). The random variables Ck, k = 1...n are inde-
pendent and identically distributed with characteristic function φC ,

φC(t) := E
[
eitCk

]
= e−it(1+g/n)

(
1 + it

∫ 1+c

0

eitxQ (R � x− 1) dx

)
. (3.12)

The expectation of Ck is equal to

ECk = (c− g/n)Q (R � c) +

∫ c−g/n

−1−g/n

xfR (x+ g/n) dx,
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where fR denotes the density of R under the risk-neutral probability.
Proof. The distribution of the random variable Ck defined in (2.3) is given by

Q(Ck > x) =

{
0 if x > c− g/n
Q (R− g/n > x) if x � c− g/n.

(3.13)

Thus Ck has a mixed distribution, with a density up to c− g/n (assuming the under-
lying asset price S is continuously distributed) and a mass point at c − g/n. Recall
that for a non-negative random variable Z with finite expectation, its characteristic
function writes as

φZ(t) = E
[
eitZ

]
= 1 + it

∫ +∞

0

eitxQ(Z > x)dx. (3.14)

This equality is well-known and follows from Fubini’s theorem. Denote by C one of
the identically distributed random variables Ck for k = 1..n.

Note that C defined by (2.3) is bounded from below and therefore stays above
−1 − g/n because it is almost surely larger than c − g/n from its survival function
given in (3.13) and the fact that the local cap, c is non-negative. The r.v. C+1+g/n
is then non-negative.

Q
(
C + 1 +

g

n
> x

)
=

{
0 if x > 1 + c
Q (R > x− 1) if x � 1 + c.

In addition φC(t) = φC+1+g/n(t)e
−it(1+g/n). Using (3.14), one obtains

φC(t) = e−it(1+g/n)

(
1 + it

∫ 1+c

0

eitxQ (R > x− 1)dx

)
.

�
Similarly we can get the distribution of Zk = max (0,min (c, Rk))− g/n.
Lemma 3.5 (distribution of Zk). The random variables Zk are independent and

identically distributed with a characteristic function

φZ(t) := E
[
eitZk

]
= e−itg/n

(
1 + it

∫ c

0

eitxQ(R > x)dx

)
. (3.15)

The expectation of Zk is equal to

EZk = (c− g/n)Q (R � c) +

∫ c−g/n

−g/n

xfR

(
x+

g

n

)
dx− g

n
Q(R < 0),

where fR denotes the density of R under the risk-neutral probability Q.
Proof. The survival function of Zk is given by

Q(Zk > x) =

⎧⎨⎩
0 if x > c− g/n
Q (R − g/n > x) if − g/n � x � c− g/n
1 if x < −g/n.

(3.16)

Here Zk has also a mixed distribution, it has a density over [−g/n, c− g/n] and two
mass points at −g/n and at c−g/n. The proof of the characteristic function is similar
to Lemma 3.4. We omit it. �
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3.4. Theoretical Approximation. In both cases, the characteristic functions
(3.12) and (3.15) are expressed as an integral of the distribution of the periodically
returns (see (3.12) and (3.15)). In general, this integral cannot be computed exactly
and one has to rely on some approximations. For example in the Black and Scholes
market, the periodical return follows a lognormal distribution, then the variables C
and Z follow truncated lognormal distributions. It is well-known that the charac-
teristic function of the lognormal distribution has no explicit formula and could be
difficult to estimate, see Leipnik [10] for a complete discussion on this topic. However
in our case, even if no closed-form expressions of φC and φZ are available, there is
a possible procedure to calculate ΘC and ΘZ and the prices of the locally-capped
contracts. We make use of the beneficial fact that the periodical returns are capped
and that the support of their distribution is therefore bounded.

To calculate ΘL (defined in (3.4)), we need to calculate the real part of φn
L. In

the case when there is no closed-form expression of φL, two steps are needed. First
we truncate the integral in ΘL (see (3.4)) and define ΘL(M) as follows

ΘL(M) =
2

π

∫ M

0

1− Re (φn
L(t))

t2
dt. (3.17)

Second, in the formula of φL (either (3.12) or (3.15)), we approximate exp(itx) by a
finitely truncated Taylor series,

∑m
k=0 (itx)

k/k!, and define for any positive integer m

ΘC(M,m) =
2

π

∫ M

0

1−Re
(
φn
C,m(t)

)
t2

dt. (3.18)

where

φC,m(t) = e−it(1+g/n)

(
1 + it

∫ 1+c

0

m∑
k=0

(itx)k

k!
Q (R � x− 1) dx

)
. (3.19)

By doing so, we are able to get a polynomial expression of φL and therefore for
Re(φn

L(t)) and obtain an interesting expression for ΘL(M). Note that the procedure
described below may not converge in the absence of a cap level c (as shown by Leipnik
[10]). It is therefore especially suited for the pricing and hedging of contracts locally-
capped at c < +∞.

Proposition 3.6. Given any positive integer M ,

|ΘL −ΘL(M)| � 4

Mπ
. (3.20)

In addition, for fixed M

lim
m→+∞ |ΘC(M)−ΘC(M,m)| = 0.

This proposition shows the convergence of the approximation to ΘL when M and
m are sufficiently large. The proof of the convergence can be found in Appendix A.
This result is of theoretical interest as it guarantees the convergence.

A numerical example in the Black and Scholes framework illustrates this approx-
imation and its accuracy in Section 4. Practical approximations of prices (3.6), (3.8)
and vegas (3.10) should in fact proceed by direct computation of (3.12) and (3.15)
with numerical integration techniques and not use the approximation technique given
in Proposition 3.6. We will discuss this point in the next section, following Table 4.1.
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4. Numerical Examples . We present first our results in the Black and Scholes
framework in 4.1 and extend them in a Lévy market model in Section 4.2.

4.1. Black and Scholes setting. In a Black and Scholes market, the financial
market is arbitrage-free, perfectly liquid and complete. The risk-free rate is constant
and equal to r, the constant yield of dividend of the index is η and its volatility is
denoted by σ. Thus

dSt

St
= (μ− η)dt+ σdWt (4.1)

where W is a standard Brownian motion under the historical probability P . In this
framework, there exists a unique risk-neutral probability Q, under which the under-
lying index follows (using Girsanov theorem),

dSt

St
= (r − η)dt+ σdZt

where Z is a standard Brownian motion under Q. Standard calculations give the
following underlying price:

St = S0e
(r−η−σ2/2)t+σZt .

The no-arbitrage price at the initial time 0 of a contract with a payoff XT paid at
time T is obtained by taking the expectation under the risk-neutral probability Q of
the discounted payoff, that is e−rT

E [XT ].

4.1.1. Distribution of periodical returns. Under our assumptions, Rk are
i.i.d. and given by

Rk = exp
{(

r − η − σ2/2
)
Δ+ σ

(
Ztk − Ztk−1

)}− 1. (4.2)

Rk has clearly the same distribution as eξ − 1, where ξ is a normal distribution

N
(
mξ, σ

2
ξ

)
with the mean mξ and the standard deviation σξ given by

ξ ∼ N ((
r − η − σ2/2

)
Δ, σ2Δ

)
.

We now apply Lemma 3.4 and Lemma 3.5 in turn to derive the distributions of
Ck and Zk in the Black and Scholes setting.

4.1.2. Distribution of Ck. The survival function of Ck in the Black and Sc-
holes model is given in (3.13) with R = eξ − 1 Note that Ck are i.i.d with a mixed
distribution. It has a density, denoted by fC , up to c− g/n (a lognormal distribution
over [−1− g/n, c− g/n]) and a point mass at c− g/n. More precisely, we have⎧⎪⎪⎨⎪⎪⎩

Q(Ck = c− g/n) = Q(R � c) = Q(ξ � ln(1 + c)) = N
(

mξ−ln(1+c)

σ
√
Δ

)
fC(x) = 1

σ(x+1+g/n)
√
2πΔ

exp
(
− (ln(x+1+g/n)−mξ)

2

2σ2Δ

)
if x ∈ (−1− g/n, c− g/n)

(4.3)
where mξ =

(
r − η − σ2/2

)
Δ and N(·) denotes the cdf of a standard normal distri-

bution. The characteristic function φC has the following compact expression

φC(t) := E
[
eitCk

]
= e−it(1+g/n)

(
1 + it

∫ 1+c

0

eitxN

(
mξ − ln(x)

σ
√
Δ

)
dx

)
. (4.4)
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The expectation of Ck does not depend on k and is equal to

E (Ck) =
(
c− g

n

)
N

(
mξ − ln(1 + c)

σ
√
Δ

)
+

∫ 1+c

0

(
y − 1− g

n

) 1√
2πΔσy

e−
(ln(y)−mξ)

2

2σ2Δ dy.

4.1.3. Distribution of Zk. To price the cliquet option in the Black and Scholes
model, we need the distribution of Zk given in (3.16) with R = eξ − 1. Simple
calculations imply⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q(Zk = c− g
n ) = Q(Rk � c) = Q(ξ � ln(1 + c)) = N

(
mξ−ln(1+c)

σ
√
Δ

)
fZ(x) = 1

σ(x+1+g/n)
√
2πΔ

exp
(
− (ln(x+1+g/n)−mξ)

2

2σ2Δ

)
if x ∈ (−g/n, c− g/n)

Q(Zk = −g/n) = Q(Rk � 0) = Q(ξ � 0) = N
(−mξ

σ
√
Δ

)
(4.5)

where mξ =
(
r − η − σ2/2

)
Δ. A straightforward calculation gives

φZ(t) = eit(c−g/n)N

(
mξ − ln(1 + c)

σ
√
Δ

)
+

∫ 1+c

1

eit(y−1−g/n) 1√
2πΔσy

e−
(ln(y)−mξ)

2

2σ2Δ dy + e−itg/nN

(−mξ

σ
√
Δ

)
.

The expectation of Zk is equal to

E (Zk) =
(
c− g

n

)
N

(
mξ − ln(1 + c)

σ
√
Δ

)
+

∫ 1+c

1

(
y − 1− g

n

) 1√
2πΔσy

e−
(ln(y)−mξ)

2

2σ2Δ dy − g

n
N

(−mξ

σ
√
Δ

)
.

4.1.4. For the Greeks. Here we provide an expression of the differentiation of
the characteristic function with respect to σ in the particular case of the Black and
Scholes market. The ultimate goal is to derive the vega of the monthly sum cap by
applying the formula in Proposition 3.3. The differentiation of φC for the monthly
sum cap is given by

∂ (φC(t))

∂σ
=

ln (1 + c)−mξ − σ2Δ

σ2
√
2πT

eit(c−g/n)e
− (mξ−ln(1+c))

2

2σ
√

Δ

+

∫ 1+c

0

1

σy
√
2πΔ

eit(y−1−g/n)

(
− 1

σ
− ln (y)−mξ

σ
+

(ln (y)−mξ)
2

σ3Δ

)
e−

(ln(y)−mξ)
2

2σ2Δ dy,

(4.6)

and the differentiation of φZ for the cliquet option is given by

∂ (φZ(t))

∂σ
=

ln (1 + c)−mξ − σ2Δ

σ2
√
2πT

eit(c−g/n)e−
(mξ−ln(1+c))

2

2σ2Δ +
mξ + σ2Δ

σ2
√
2πT

e−itg/ne−
m2

ξ

2σ2Δ

+

∫ 1+c

1

1

σy
√
2πΔ

eit(y−1−g/n)

(
− 1

σ
− ln (y)−mξ

σ
+

(ln (y)−mξ)
2

σ3Δ

)
e−

(ln(y)−mξ)
2

2σ2Δ dy.

(4.7)
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4.1.5. Approximation. In the Black and Scholes model,

Rk = eξ − 1 ∼ LN(mξ, σ
√
Δ).

Define for k > 0 and given c,

μk := μ
(c)
k =

∫ 1+c

0

kxk−1N

(
mξ − ln(x)

σ
√
Δ

)
dx, (4.8)

and assume μ
(c)
0 = 1. For all k, μk = μ

(c)
k is a positive real number. Note that when

c = +∞, μ
(+∞)
k = E

[
Zk

]
which is the k-th moments of a r.v. Z with a lognormal

distribution. Then, for m � 1,

φC,m(t) = e−it(1+g/n)

(
1 + it

∫ 1+c

0

m−1∑
k=0

(itx)k

k!
N

(
mξ − ln(x)

σ
√
Δ

)
dx

)

= e−it(1+g/n)
m∑
j=0

(it)j

j!
μj (4.9)

and thus

φn
C,m(t) = e−it(n+g)

⎛⎝ m∑
j=0

(it)j

j!
μj

⎞⎠n

= e−it(n+g)
nm∑
�=0

α�(it)
� (4.10)

where

α� :=
∑

{(j1, ..., jn) | j1 + ...+ jn = 
}

(
n∏

k=1

μjk

jk!

)
.

In particular,⎧⎪⎪⎨⎪⎪⎩
α0 = μn

0 = 1
α1 = nμ1,
α2 = n(n− 1)μ2

1/2 + nμ2/2,
α3 = n(n− 1)(n− 2)μ3

1/6 + n(n− 1)μ2μ1/4 + nμ3/6.

Thus, ΘC(M) in (3.17) can be approximated by

ΘC(M,m) =
2

π

M∫
0

1−Re
(
φn
C,m(t)

)
t2

dt. (4.11)

given in formula (3.18). Using the expression of φn
C,m(t) in (4.10) we obtain the

following expression of the real part

Re
(
φn
C,m(t)

)
= cos((n+g)t)

�nm/2�∑
�=0

α2�(−1)�t2�+sin((n+g)t)

�(nm−1)/2�∑
�=0

α2�+1(−1)�t2�+1.

(4.12)

We are now able to explicitly calculate the initial terms of



C. BERNARD and W.V. LI 11

ΘC(M,m) = E0 + E1 + E2 + ES + EC (4.13)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0 = 2
π

∫M

0
t−2(1− cos((n+ g)t))dt

= n+ g − 2
π

∫ +∞
M t−2(1− cos((n+ g)t))dt ∼ n+ g

E1 = −2
π

∫M

0 t−1sin((n+ g)t)α1dt

= −α1 +
2
π

∫ +∞
M t−1sin((n+ g)t)α1dt ∼ −α1

E2 = 2
π

∫M

0 cos((n+ g)t)α2dt =
2 sin((n+g)M)α2

π(n+g)

ES = 2
π

�(nm−1)/2�∑
�=1

M∫
0

sin((n+ g)t)α2�+1(−1)�+1t2�−1dt

EC = 2
π

�nm/2�∑
�=1

M∫
0

cos((n+ g)t)α2�(−1)�+1t2�−2dt

and the asymptotics ∼ refer to the limit as M → +∞. Of course additional terms for
αm, m ≥ 3, can be given but practical improvements are limited.

4.1.6. Numerical example. We consider a 5 year contract (T = 5). The
interest rate is r = 4% and the volatility of the underlying portfolio S is set at
σ = 20%, the dividend yield is η = 1% and the guaranteed rate g = 10%. The
investor brings an initial amount of money K = 1000 and invests in a monthly sum
cap over the life of the contract. The monthly cap is chosen to be 8.5%.

Table 4.1

Comparison of numerical techniques to estimate ΘC

Monte Carlo Formula (3.7) in Proposition 3.2 using (4.15)

A = 5 · 105 0.3372(4 · 10−4) M = 300, ε1 = 1 · 10−4 ε2 = 5 · 10−5 0.3374

A = 5 · 106 0.3370(10−4) M = 300, ε1 = 1 · 10−4 ε2 = 1 · 10−4 0.3373

A = 5 · 106 0.3370(10−4) M = 300, ε1 = 1 · 10−4 ε2 = 5 · 10−4 0.3373

A = 5 · 106 0.3370(10−4) M = 300, ε1 = 1 · 10−4 ε2 = 1 · 10−3 0.3373

A = 5 · 106 0.3370(10−4) M = 300, ε1 = 1 · 10−4 ε2 = 5 · 10−3 0.3371

A = 5 · 106 0.3370(10−4) M = 300, ε1 = 1 · 10−4 ε2 = 1 · 10−2 0.3369

A = 5 · 106 0.3370(10−4) M = 400, ε1 = 1 · 10−4 ε2 = 1 · 10−2 0.3374

A = 5 · 106 0.3370(10−4) M = 1850, ε1 = 7 · 10−5 ε2 = 0 · 10−2 0.3369

In Table 4.1, we compare numerical estimation of ΘC using different approaches.
The first two columns are obtained by Monte Carlo using A simulations. In parenthesis
we give the standard deviation. The last two columns correspond to Proposition 3.2
with a direct numerical integration of expression (4.4) (which is (3.12) expressed in
the Black and Scholes framework) over [ε1, 1 + c].

φC(t) ≈ e−it(1+ g
n)

(
1 + it

∫ 1+c

ε1

eitxN

(
mξ − ln(x)

σ
√
Δ

)
dx

)
. (4.14)

Formula (3.7) in Proposition 3.2 gives the price of a Monthly Sum Cap contract. It
is approximated by

ΘC ≈ 2

π

∫ M

ε2

t−2(1− Re (φn
C(t)))dt (4.15)
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where φn
C is obtained by (4.14) and M , ε1 and ε2 are chosen in Table 4.1.

We use Matlab software to obtain all the following numerical results. The results
are reported using the Matlab procedure “quadl(·).” This procedure approximates
the integral of the integrant from the lower bound of integration (here ε2 or ε1) to the
upper bound (here M or 1 + c), to within an error of 10−6 using recursive adaptive
Lobatto quadrature (See Gander and Gautschi [4]). Monte Carlo techniques can
be very slow (several minutes) whereas our technique gives a number within a few
seconds.

A numerical integration of (4.4) converges faster than the approximate results
obtained using the approximation (4.13) obtained by truncation. In practice, Propo-
sition 3.2 is a very good alternative to Monte Carlo simulations. The fact that it is a
semi-closed-form and that it is not obtained by Monte Carlo simulations imply that
the Greeks are less sensitive and easier to estimate.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
900

920

940

960

980

1000

1020

Volatility σ

 

 

Our method
MC estimates

Fig. 4.1. Prices of monthly sum cap contracts with respect to volatility parameter σ, ranging
from 5% to 40%. Monte Carlo estimates are obtained using 5,000 simulations. Parameters are set
to T = 5, r = 0.04, η = 0.01, g = 0.1, K = 1000, c = 0.085. “Our Method” refers to a numerical
integration of (4.15) using the expression (4.4) for the characteristic function.

We report in Figure 4.1 the prices as a function of σ as well as their corresponding
greeks as a function of σ (for a range of σ between 5% to 40%). We observe that the
price of a monthly sum cap contract has a very particular behaviour with respect to
the volatility parameter. It is this specific behaviour that can be used to implement
a natural hedge against volatility fluctuations in Bernard and Boyle [1].

In equity-linked insurance, the investor (policyholder) typically gives a fixed
amount at inception of the contract to the insurer. This corresponds to the full
amount he wants to invest. Parameters of the contract are then determined so that
the no-arbitrage value (or price) is equal to the initial investment of the investor.
If this is the case, the contract is called a “fair” contract. For example on Figure
4.1, we observe that the contract’s price is generally not equal to 1,000 (which is the
initial investment here). In fact it appears clearly from Figure 4.1 that the contract
is fair only when σ is around 11% or around 20%. We chose the parameters of the
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contract so that it would be fair with the parameters for the financial market chosen
in our simulation (in particular σ = 20% for our base parameter choice). However in
Figure 4.1, we study the contract as a function of the volatility parameter, all other
parameters being fixed, the price of the contract changes and it cannot stay “fair”.

Observe also the non-monotonicity of the price with respect to the volatility
parameter σ and its very high sensitivity to changes in σ. Recall that vega is the sen-
sitivity to σ (derivative of the price with respect to σ). Therefore vega will obviously
change sign between σ = 14% and σ = 17% as it appears in Figure 4.1 already.

Finally Figure 4.2 displays the corresponding vegas. We now used 10,000 simula-
tions to estimate vega. It is well-known that obtaining accurate and stable Greeks by
Monte Carlo simulation can be challenging (See for example Korn et al. [8] or Glasser-
man [5]). To compute the vega by Monte Carlo, there are multiple techniques. We
use the so-called “principle of common random numbers (or path recycling)” (see for
example page 260 of Korn et al. [8], it is a standard technique which consists of using
the same numbers to compute the price of the contract when the volatility is σ + κσ
(where κ denotes a very small percentage) and when the volatility is σ). We then
compute the difference between these two prices and divide it by κσ. We tried several
values for κ and picked one sufficiently small for which the vega is not sensible to the
choice of κσ, here 1% for Figure 4.2. This is an advantage of using semi-closed-form
expressions and numerical integration. Sensitivities can be calculated, and the curves
are sufficiently smooth to be differentiated another time if necessary. It is needed for
example to obtain the gamma of options. Also note that the calculation by numerical
integration can be done in a few seconds whereas the Monte Carlo simulation needed
to obtain the same accuracy requires several minutes.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
−600

−400

−200

0

200

400

600

Volatility σ

 

 
Our method
MC estimates

Fig. 4.2. Vegas of monthly sum cap contracts with respect to volatility parameter σ, ranging
from 5% to 40%. Monte Carlo estimates are obtained using 10,000 simulations. Parameters are set
to T = 5, r = 0.04, η = 0.01, g = 0.1, K = 1000, c = 0.085. “Our Method” refers to a numerical
integration of (4.15) using the expression (4.4) for the characteristic function.

4.2. Lévy market model . Semi-closed-form expressions for the prices of monthly
sum cap contracts and cliquet options are given in Proposition 3.2. It is shown that
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these prices can be expressed as function of EC1 and φC (respectively EZ1 and φZ)
which can be computed as soon as Q(R > c) and fR(·) are known as it appears clearly
in Lemmas 3.4 and 3.5.

In a Black and Scholes market model, the expressions for Q(R > c) and fR(·)
are known explicitly and formulas can be simplified as it was done in the previous
section. In this section we show that our study can be extended to more realistic
market models, the Lévy market models.

Lévy market models are popular models used for stock prices. In particular they
are able to reflect the presence of jumps in stock prices and they incorporate the Black-
Scholes setting as a special case. In a Lévy market, semi-closed-form expressions for
Q(R > c) and fR(·) can also be derived easily. Recall that when time steps are equally
spaced, and the underlying process S is stationary with independent increments, R
(defined in (2.1)) can be calculated as

R :=
S(Δ)− S(0)

S(0)

where Δ is the time step. In a Lévy market,

S(Δ) = S(0)eX(Δ)

where the characteristic function of X(Δ), denoted by φX , is known. Furthermore
note that

Q(R > x) = Q(X(Δ) > ln(x)).

Therefore the survival function of R is directly obtained from the survival function of
X(Δ). In particular R is distributed over (−1,+∞) and has the following probability
distribution function

fR(x) =
fX(ln(1 + x))

1 + x
,

where the pdf ofX(Δ), fX(·), is calculated for example as fX(x) = 1
2π

∫ +∞
−∞ e−iuxφX(u)du.

To obtain the survival function of X(Δ), we make use of the following formula. For
all a ∈ R, the cdf of X(Δ) is equal to

FX(x) =
eax

2π

∫ +∞

−∞
eiux

φX(ia− u)

a+ iu
du. (4.16)

This formula is the standard Fourier inversion formula when a = 0. It is proved by
Le Courtois and Walter [9] that it holds for an arbitrary choice for a. For example
it can be useful to remove potential singularities in the integration. This approach is
particularly interesting to deal with a large class of Lévy processes. We now illustrate
this point with the Variance-Gamma model presented in Madan et al. [13].

The Variance-Gamma Lévy process is a subclass of Lévy process easy to simulate.
We thus compare two approaches. The first approach is obtained by Monte Carlo
using the simulation of the Variance-Gamma model by subordination of the Brownian
motion. The second method consists of using (4.15) to compute (3.7). In the case of
a Variance-Gamma process, the characteristic function φX is given by

φX(u) =
(
1 + σ2νu2/2− iδνu

)−Δ
ν . (4.17)



C. BERNARD and W.V. LI 15

The simulation technique is very standard and can be found for example in Korn et
al. [8], Algorithm 7.2 page 346 (where we slightly change this algorithm to take into
account the scale parameter σ: we simulate increments asX(ti) = X(ti−1)+σ

√
GiYi+

θGi instead of X(ti) = X(ti−1) +
√
GiYi + θGi). Increments are independent and

identically distributed, we have that R = eX−1 whereX = (r+ω)dt+θg+σ
√
gN(0, 1)

where g is a Gamma distribution Γ (dt/ν, 1). The density of X can be obtained easily
as the integral of the product of the density of a normal distribution and the density
of a Gamma random variable (See Madan and Senata [14], Madan et al. [13]). We
use the same parameters as before: T = 5, r = 0.04, g = 0.1, K = 1000, c = 0.085
and S0 = 1. The Variance-Gamma parameters are such that δ = 0.01, σ = 0.05,
θ = 0.001 and ν = 0.0625. We find that a Monte Carlo estimate Θ̂C = 0.3163(0.0008),
using A = 80, 000 simulations and the standard deviation is given in parenthesis. A
numerical integration of (4.15) using the expression of ΘC given in Formula (3.7) in
Proposition 3.2 converges for M ≥ 30, ε1 < 0.0001 and ε2 < 0.01. As the simulation
of Variance Gamma Lévy models is very simple, it is easier to obtain this accuracy
by direct Monte Carlo simulations rather than using the double numerical integration
involved in the method that we describe above. However, it is not always possible to
simulate using an exact (and simple) technique the underlying process. For instance,
only approximate simulation methods are available to simulate the CGMY process
introduced by Carr et al. [15] (see for example Table 6.1 and Section 6.3 in Cont and
Tankov [3]).

5. Conclusion. This paper presents a new formula for calculating prices and
hedging parameters of locally-capped contracts and cliquet-style options. Examples
are derived in the Black and Scholes framework and in Lévy market models. Our
approach applies to any financial market where the underlying is stationary with
independent increments. The main difficulty in pricing and hedging these contracts
in more advanced financial models is to be able to get an expression for the expectation
and for the characteristic function of truncated returns of the underlying stock price.
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Appendix. Convergence of the approximation .
Let ε > 0. There are two steps. First we have

∀M � 4

πε
, |ΘL −ΘL(M)| � ε.

This follows from

|ΘL −ΘL(M)| �
∣∣∣∣ 2π

∫ +∞

M

1−Re(φn
L(t))

t2

∣∣∣∣
� 2

π

∫ +∞

M

2

t2
dt

� 4

Mπ
.

Recall that

φC(t) = e−it(1+ g
n )

(
1 + it

∫ 1+c

0

eitxQ (R � x− 1) dx

)
. (A.1)

We define for m � 1,

φC,m(t) = e−it(1+ g
n)

(
1 + it

∫ 1+c

0

m∑
k=0

(itx)k

k!
Q (R � x− 1) dx

)
.

Then

|φC(t)− φC,m(t)| � t

∫ 1+c

0

∣∣∣∣∣eitx −
m∑

k=0

(itx)k

k!

∣∣∣∣∣Q (R � x− 1)dx

� 2
tm+2

(m+ 1)!

∫ 1+c

0

xm+1Q (R � x− 1) dx

because ∣∣∣∣∣eitx −
m∑

k=0

(itx)k

k!

∣∣∣∣∣ � 2
(xt)m+1

(m+ 1)!
. (A.2)

The upper bound (A.2) can be derived for instance by writing eitx as cos(tx)+i sin(tx)
and writing the integral remainders of the respective taylor expansion of cos(tx) and
sin(tx). Thus,

|φC(t)− φC,m(t)| � 2
tm+2

(m+ 2)!
(1 + c)m+2. (A.3)

We now define for given M and n,

ΘC(M,m) =
2

π

∫ M

0

1−Re
(
φn
C,m(t)

)
t2

dt (A.4)

and show that it approximates ΘC(M). We start with

|ΘC(M)−ΘC(M,m)| � 2

π

∫ M

0

t−2
∣∣Re (φn

C(t))−Re
(
φn
C,m(t)

)∣∣ dt.
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Note that∣∣Re (φn
C(t))−Re

(
φn
C,m(t)

)∣∣ � ∣∣φn
C(t)− φn

C,m(t)
∣∣

� |φC(t)− φC,m(t)|
∣∣∣∣∣
n−1∑
k=0

φn−k
C (t)φk

C,m(t)

∣∣∣∣∣
� |φC(t)− φC,m(t)|

n−1∑
k=0

|φC,m(t)|k

� |φC(t)− φC,m(t)|
n−1∑
k=0

(1 + |φC(t)− φC,m(t)|)k

because |φC(t)| = 1. Using (A.3), one has

|ΘC(M)−ΘC(M,m)|

� 2

π

∫ M

0

(
2

tm

(m+ 2)!
(1 + c)m+2

) n−1∑
k=0

(
1 +

(
2

tm+2

(m+ 2)!
(1 + c)m+2

))k

dt.

Since M and n are fixed, then

lim
m→+∞ |ΘC(M)−ΘC(M,m)| = 0.

It shows that this approximation works in theory. Examples in section 4 will illustrate
that it does not work as well as direct numerical integration of ΘL(M) given by (A.4).
However, the approximations here are of theoretical interest in further asymptotic
analysis. �


