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Abstract

Bernard and Boyle (2010) derive the lowest cost strategy (also called “cost-efficient” strategy)
that achieves a given wealth distribution. An optimal strategy for a profit seeking investor with
law-invariant preferences is necessarily cost-efficient. In the specific case of a Black-Scholes
market the optimal strategy is always path-independent and non-decreasing with the stock
price. Assuming now that investors still want to achieve a given distribution at a fixed horizon
but have a probability constraint, we propose an explicit construction of the optimal strategy.
In the case of the Black-Scholes market, we show that the optimal strategy is not necessarily
non-decreasing in the stock price any more.

1. INTRODUCTION

This note extends Bernard and Boyle (2010) by including additional probability constraints. An
investor with law-invariant preferences but with some probability constraints has “state-dependent”
preferences. We show that the non-decreasing property of the optimal investment for law-invariant
preferences does not hold when preferences are state-dependent. Section 2 gives our assumptions,
the framework and recalls what cost-efficiency is and its link with optimal investment. Section 3
provides some theoretical results on bounds on copulas under probability constraints and how to
use them to solve our optimization problem. We apply theoretical results of Section 3 to some
optimal investment problems in Section 4.

1Both authors gratefully acknowledge the program “Brains Back to Brussels” that funded an extended research visit
of C. Bernard at VUB in Brussels during which this paper was completed. S. Vanduffel acknowledges the financial
support of the BNP Paribas Fortis Chair in Banking. C. Bernard also acknowledges support from WatRISQ and the
Natural Sciences and Engineering Research Council of Canada.
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2. COST-EFFICIENCY & OPTIMAL INVESTMENT

In this section we first present the model assumptions and the setting. We then give the general
form of the optimal investment problem we want to solve in this paper. In particular we relate
the optimal investment choice to the concept of “cost-efficiency” (originally defined by Dybvig
(1988a,b)).

2.1. Agent’s Preferences

Denote by U(·) the investor’s objective function he wants to maximize. We make the following
assumptions.

• All investors have a fixed investment horizon T > 0 and there is no intermediate consump-
tion.

• Investors prefer “more to less”, in other words their respective objective functions preserve
first order stochastic dominance relationships (denoted by ≺fsd). Hence if YT ≺fsd XT then
U(XT ) � U(YT ) and U(·) is non-decreasing.

• Investors have “state-independent preferences” or “law-invariant preferences”: if YT has the
same distribution as XT then U(YT ) = U(XT ).

Such set of preferences is quite general and consistent with a wide range of decision theories,
including the expected utility theory (von Neumann and Morgenstern (1947)), Yaari’s dual theory
of choice (Yaari (1987)), the cumulative prospect theory (Tversky and Kahneman (1992)) and the
rank dependent utility theory (Quiggin (1993)). For example, in the particular case of expected
utility the preferences for a final wealth XT would be calculated as U(XT ) = E[u(XT )] where u is
the investor’s utility function. Instead of maximizing an objective function, one may also minimize
any law-invariant risk measure that preserves first stochastic dominance (for example the quantile
or a general distorted expectation).

2.2. Financial Market

The financial market contains a (risk-free) bond with price process {Bt = B0e
rt, t � 0}. Further,

there is also a risky asset S with price process {St, t � 0}. We assume trading can be done
continuously, the market is frictionless and arbitrage-free, and all investors agree on the pricing
kernel used to value derivatives in this market. The initial price c(XT ) of a given contract with
payoff XT maturing at the fixed horizon T > 0 is given by

c(XT ) = E[ξTXT ]. (1)

Here the expectations are taken with respect to the physical probability measure P, and {ξt, t � 0}
is called the state-price process. We will also assume that ξt is continuously distributed. In partic-
ular it holds that

c(1) = E[ξT ] = e−rT . (2)
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It is also well-known that c(XT ) can be presented as the discounted expectation under the risk-
neutral measure Q defined through ξt = e−rt(dQ

dP
)t. In the remainder of the paper all expectations

are taken under the P measure. We refer to Bjork (2004) for extensive theory on arbitrage-free
pricing.

Note that the above description is rather general and includes the Black-Scholes setting in
which case the process {ξT , t � 0} is known unambiguously. For the ease of exposition we present
all the results in the one-dimensional Black-Scholes market2. In this setting there is a bijection
between the state-price process ξt and the risky asset St. Recall that the risky asset price St evolves
according to

dSt

St
= μdt+ σdWt, (3)

where {Wt, t � 0} is a standard P-Brownian motion and assume μ > r. The state price process
{ξt, t � 0} exists, is unique and is given by

ξt = a

(
St

S0

)− θ
σ

, (4)

where a = e
θ
σ
(μ−σ2

2
)t−(r+ θ2

2
)t and θ = μ−r

σ
. Note that ξt is decreasing in St. Denote by Fξ the cdf

of ξT . Let MT denote the mean of log(ξT ), MT = −1
2
θ2T − rT . The variance of log(ξT ) is equal

to θ2T . Then,

Fξ(x) = P (ξT ≤ x) = Φ

(
log(x)−M

θ
√
T

)
. (5)

2.3. Cost Efficiency & Investment

The concept of “cost-efficiency” was first introduced by Cox and Leland (1982, 2000) and Dybvig
(1988a,b).

Definition 2.1 A strategy (or a payoff) is cost-efficient if any other strategy that generates the same
distribution costs at least as much.

It is clear that if investors prefer more to less (as per our assumptions in Section 2.1), then
in the absence of additional constraints optimal investment strategies will necessarily be cost-
efficient. Given the cdf that the investor would like to achieve at a given maturity date T (possibly
a retirement date), the optimal strategy then solves the following problem

(P1)
min
XT

E [ξTXT ]

subject to ∀x ∈ R, P(XT � x) = F (x)
(6)

The objective is to minimize the cost of a payoff XT such that XT has cdf F . Define F−1 as
follows

F−1(y) = inf {x | F (x) � y} .
2It would be possible to be more general and include the multidimensional case as studied by Bernard et al. (2011)

or the Levy market presented in Vanduffel et al. (2011).
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The inverse is left-continuous and non-decreasing. Theorem 2.1 characterizes the optimal invest-
ment strategy.

Theorem 2.1 Let F be a cdf. The solution to P1 given by (6) is equal to

Y �
T = F−1 (1− Fξ (ξT )) , (7)

and it is the almost surely unique optimal solution to (6).

This theorem corresponds to the main result of Bernard and Boyle (2010). We will see that it can
be obtained as a special case of our approach.

Assume now that the investor is subject to additional constraints that are “state-dependent”.
The cost-efficient strategy (7) solution to P1 may not satisfy these constraints and therefore the
optimal strategy may be strictly more expensive. We formulate the problem as follows.

(P2)

min
XT

E [ξTXT ]

subject to

{ ∀x ∈ R, P(XT � x) = F (x)
(Ci)i∈I

(8)

The optimal strategy is distributed with the cdf F but in addition each Ci denotes an additional con-
straint and I can be finite or infinite. Each constraint Ci contains information about the dependency
structure between the state-price process and the optimal strategy of the investor given by

P(ξT < �i, XT < xi) = bi.

In a Black-Scholes market, the state-price process is a function of the risky asset. Then a natural
example is a simple probability constraint ensuring that the investment strategy is greater than
some guaranteed level when the market itself is very low. The constraint can then write as

P(ST < αS0, XT > b) � ε,

where α < 1, see equation (4).
Adding such constraints is important because investors have state-dependent constraints. For

example an investor who invests in a put option, is not interested in cost-efficiency only (because
it is decreasing in the underlying stock) but wants positive outcomes when the market goes down.

3. SOLUTIONS TO PROBLEMS (P1) AND (P2)

3.1. Formalization

Problems P1 and P2 presented above can be reformulated as “dependence” problems (in other
words as problems on copulas). Indeed Problem P1 is clearly a minimization of E[XT ξT ] where
marginals of XT and ξT are known but where no information about the dependency between XT

and ξT is given. It can also be interpreted as the minimization of E[XTg(ST )] where marginals of
ST and XT are known and where g(y) = a(y/S0)

−b for some b > 0 because of (4). Problem P2 is
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similarly a minimization of E[XT ξT ] or E[XTg(ST )] but with some information on the dependency
between XT and the market ST .

Let (X, Y ) be a couple of random variables. It is well-known that the joint distribution for
(X, Y ) is fully determined upon knowledge of the marginal distributions FX and FY together with
the copula function C := C(X,Y ) for (X, Y ) (this result is known as Sklar’s theorem).

Let us define supermodular functions. Let ei denote the i-th ndimensional unit vector, and
let f : Rn → R be some function. For x = (x1, · · · , xn) ∈ Rn we then define Δε

if(x) =
f(x+ ε ei)− f(x) (εi > 0, 1 � i � n).

Definition 3.1 (Super modularity) A function f : Rn → R is said to be supermodular (or 2-
increasing) if for all x ∈ Rn, δ > 0, ε > 0 and 1 � i < j � n it holds that.

Δδ
iΔ

ε
j f(x) � 0.

If f : Rn → R is twice differentiable then f is supermodular if and only if ∂2

∂xi∂xj
f (x) � 0 holds

for every x ∈ Rn and 1 � i < j � n.

See for example Marshall and Olkin (1979), p. 146. A function f is submodular when −f is
supermodular.

The problem P2 given in (8) we want to solve amounts to studying integrals of the form
E[f(X, Y )] where f is submodular or supermodular. Theorem 3.1 below can be found in Tankov
(2011) and provides, under suitable assumptions, an expression for the integral E[f(X, Y )] in
terms of the copula C, and the marginal distributions FX and FY .

Theorem 3.1 (Bounds for E[f(X, Y )]) Assume f : R2
+ → R is supermodular and left-continuous

in each of the arguments. Assume also that

E [|f(X, 0)|+ |f(0, X)|+ |f(Y, 0)|+ |f(0, Y )|+ |f(X,X)|+ |f(Y, Y )|] < ∞,

then Π(C) = E[f(X, Y )] is given by

Π(C) = −f(0, 0) + E [f(X, 0)] + E [f(0, Y )] (9)

+

∫ ∞

0

∫ ∞

0

μf (dx× dy)(1− FX(x)− FY (y) + C(FX(x), FY (y))

where μf is the measure on R2
+ induced by the supermodular function f .

In addition, if the copula C admits pointwise bounds L and U

∀u ∈ (0, 1), ∀v ∈ (0, 1) L(u, v) � C(u, v) � U(u, v).

Then
Π(L) � Π(C) � Π(U), (10)

where L and U are not necessarily copulas but could be more general functions (such that the
double integral in (9) exists).
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Proof. The expression (9) is given in Proposition 2 of Tankov (2011).
It seems that the expression (9) did not appear yet elsewhere in the literature although it is not

the focus of Tankov (2011)3. As a first application of Theorem 3.1 let us consider the supermodular
function f defined as f(x, y) = xy. In this case μf(dx× dy) = dx× dy. Hence

E[XY ] =

∫ ∞

0

∫ ∞

0

P(X > x, Y > y)dxdy, (11)

which is well-known.
Another example of supermodular function is f(x, y) = −xg(y) where g(y) = a · (y/S0)

−b.
This function appears in the case of a one dimensional Black-Scholes market as the bijection
between the risky asset (respectively the market portfolio) and the state price process. In this case,
the objective to minimize in problems P1 and P2 corresponds to minimizing E[f(XT , ST )]. Note
that ∂2f

∂x∂y
� 0 which means that it is a submodular function. In that case, μf(dx×dy) = g′(y)dxdy.

Hence

E[Xg(Y )] =

∫ ∞

0

∫ ∞

0

P(X > x, Y > y)g′(y)dxdy. (12)

Theorem 3.1 is very useful to actually compute bounds for E[f(X, Y )] in case one knows the
marginal distributions of X and Y, with limited information on the dependence between X and Y .
The main idea is to translate the information one has on the dependence to derive bounds on the
unknown copula C(X,Y ). Using Theorem 3.1 (precisely the inequality (10)), solving problems P1

and P2 amounts to finding bounds on copulas. Problem (P1) given in (6) and Problem (P2) given
in (8) can then be formulated as special cases of the following general problem

min
X

E [f(X, Y )]

subject to

{
X ∼ F, Y ∼ G
∀i ∈ I, P(Y < �i, X < xi) = bi

(13)

where I is the set of constraints. Problem P1 corresponds to I = ∅. Each additional constraint
directly provides information on the dependence between X and Y . In Problem P1 and P2, the
r.v. Y is the state-price process or a function of ST , its distribution G is known and depends on the
financial market.

The rest of the paper focuses on deriving the bounds A and B such that the unknown copula
between X and Y satisfies

∀u, v ∈ (0, 1), A(u, v) � C(X,Y )(u, v) � B(u, v) (14)

3It generalizes many existing formulas in the literature. For example consider the supermodular function f ,
f(x, y) = (x + y − d)+. In this case we obtain: μf (dx × dy) = δy=d−x.dx× dy. Hence

E[(X + Y − d)+] = E [(X − d)+] + E [(Y − d)+] +

∫ d

0

P(X > x, Y > d− x)dx

= E[X ] + E[Y ]− d+

∫ d

0

P(X � x, Y � d− x))dx

which conforms with the expression for E[(X + Y − d)+] that was derived in Dhaene and Goovaerts (1996). Their
result now appears as a special case of Theorem 3.1.
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In general the boundsA and B are not copulas but quasi-copulas. First recall that a two-dimensional
copula is any supermodular function C : [0, 1]

2 → [0, 1] such that for all u ∈ (0, 1) it holds that
C(0, u) = C(u, 0) = 0 and also that C(u, 1) = C(1, u). It is well-known that this definition
implies that C is increasing in each argument and also that C is Lipschitz continuous, i.e that
|C(u1, v1)− C(u2, v2)| � |u1 − u2| + |v1 − v2| for all (u1, v1), (u2, v2) ∈ [0, 1]2. These two
properties together with the boundary conditions define the weaker concept of quasi-copula:

Definition 3.2 (Quasi-copula) A two-dimensional quasi-copula is any function Q : [0, 1]2 →
[0, 1] with the following properties:

(i) Boundary conditions: for all u ∈ (0, 1) it holds that Q(0, u) = Q(u, 0) = 0 and also that
Q(u, 1) = Q(1, u);

(ii) Q is increasing in each argument and Lipschitz continuous.

Of course any copula is a quasi-copula but the opposite is not true; for an insightful treatment
of copulas we refer to Nelsen (2006). For example a characterization of quasi-copulas is given in
Theorem 2.1 of Nelsen et al. (2002).

3.2. Solution to P1

In Problem P1, the marginal distributions FX and FY are known but no information is given.

Theorem 3.2 (Classical Fréchet bounds) Consider a random couple (X, Y ), it is well-known
that

∀u, v ∈ (0, 1), min(u, v) � C(u, v) � max(0, u+ v − 1)

which respectively correspond to the comonotonic and anti-comonotonic copula. Let f be a su-
permodular function. Then,

E
[
f
(
F−1
X (U) , F−1

Y (1− U)
)]

� E[f(X, Y )] � E
[
f
(
F−1
X (U) , F−1

Y (U)
)]

.

Proof. This result is well-known and the proof is omitted.
Solving Problem P1 is now straightforward and Theorem 2.1 can be seen as a particular case

of Theorem 3.2 where f(x, y) = xy. For every XT with cdf F it holds that

E[F−1(1− FξT (ξT ))] � E[ξTXT ] � E[F−1(FξT (ξT ))] (15)

Note that (U, 1− U) is a legitimate copula so that the bounds are reached.

3.3. Solution to P2 under probability constraints

We assume that the information on the dependence between X and Y is such that the copula C(X,Y )

is known on a compact subset of the unit square. Bounds were given by Tankov (2011) and we
recall here his results
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Theorem 3.3 Let S be a compact subset of [0, 1]2 and consider a quasi-copula Q. Let us define
for all u,v ∈ [0, 1]

US,Q(u, v) = min

(
u, v, min

(a,b)∈S

{
Q(a, b) + (u− a)+ + (v − b)+

})
,

LS,Q(u, v) = max

(
0, u+ v − 1, max

(a,b)∈S

{
Q(a, b)− (a− u)+ − (b− v)+

})
(16)

Then for every quasi-copula Q∗ so that Q∗(a, b) = Q(a, b) for all (a, b) ∈ S it holds that for all
u, v ∈ [0, 1]

LS,Q(u, v) � Q∗(u, v) � US,Q(u, v). (17)

Furthermore for all (a, b) ∈ S we have that

LS,Q(a, b) = US,Q(a, b) = Q(a, b). (18)

Moreover LS,Q and US,Q are quasi-copulas. Finally, when S is increasing and Q is a copula, we
have that LS,Q is a copula whereas if S is decreasing, we have that U S,Q is a copula.

Proof. The proof can be found in Tankov (2011).

Note that Theorem 3.3 can be applied whenever the values of a copula C are known on a
compact subset S (C just plays the role of Q in this case).

Special case where S ={a, b}.
Let C∗ a copula such that C∗(a, b) = ϑ with ϑ such that max(a+ b− 1, 0) � ϑ � min(a, b) holds.
Then for all u, v ∈ [0, 1] the upper and lower bounds are now given by

Ua,b,ϑ(u, v) = min
(
u, v, ϑ+ (u− a)+ + (v − b)+

)
,

La,b,ϑ(u, v) = max
(
0, u+ v − 1, ϑ− (a− u)+ − (b− v)+

)
(19)

respectively. Both are copulas and satisfy La,b,ϑ(a, b) = Ua,b,ϑ(a, b) = C∗(a, b) = ϑ. These
copulas are called shuffles. In short, a shuffle copula has a support constituted of line segments of
slope +1 and -1. More details on shuffles are presented in Section 3.2.3 of Nelsen (2006).

4. EXAMPLES IN BLACK SCHOLES

4.1. Optimization with a unique probability constraint C(a, b) = ϑ

We now describe the simulation of a couple of uniform random variables (U, V ) with copula equal
to the lower or upper bound found in (19). Draw first a random number u from the uniform (0,1)
distribution, then V is fully determined. To obtain a couple (U, V ) with the copula La,b,ϑ, v is
calculated as the following function of u⎧⎪⎪⎨

⎪⎪⎩

v = 1− u if 0 � u � a− ϑ,
v = a+ b− ϑ− u if a− ϑ � u � a,
v = 1 + ϑ− u if a � u � 1 + ϑ− b,
v = 1− u if 1 + ϑ− b � u � 1.

(20)



Optimal Investment under Probability Constraints 9

For Ua,b,ϑ, it is similar and omitted here. Panel A of Figure 1 gives the support of the shuffle copula
La,b,ϑ.

We now apply this to the construction of the “optimal” solution to P2 when the probability
constraint is given by

P(ST < αS0, XT > b) = ε (21)

where α > 0. This probability constraint ensures that the realized payoff is greater than some
guaranteed level b when the market itself is low (case when α < 1).

In the Black-Scholes model, ST = g(ξT ) where g is non-increasing therefore

P(ST < αS0, XT > b) = P(ξT > �,XT > b)

= P(G(ξT ) > G(�);F (XT ) > F (b))

= 1−G(�)− F (b) + C(G(�), F (b))

where � = g(S0) and where C is the copula of (ξT , XT ). We are solving a special case of the
problem (P2) given in (8),

min
XT

E [ξTXT ]

subject to

⎧⎪⎨
⎪⎩

XT ∼ F

ln(ST ) ∼ N
(
ln(S0) +

(
μ− σ2

2

)
T, σ2T

)
P(ST < αS0, X > b) = ε

This can be rewritten in terms of the state-price process. Note then that P(ξT � �,XT � b) =
ε− 1 + FξT (�) + F (b). Therefore the problem can be restated as

min
XT

E [ξTXT ]

subject to

⎧⎨
⎩

XT ∼ F
ln(ξT ) ∼ N (MT , VT )
C(FξT (L), F (y0)) = ϑ

where ϑ = ε−1+FξT (�)+F (b) and C is the copula between ξT and XT . We will use Theorem 3.1
where the copula C that appears in the formula is replaced by the copula L of the lower bound. We
construct explicitly the optimal strategy by simulating U = FξT (ξT ) and constructing V following
(20) to simulate a couple (U, V ) of uniform (0,1) such that the copula is LFξT

(	),F (b),ϑ. V is a
function of U , let h be such that V = h(U). Then the optimal solution to P2 with the probability
constraint (21) given explicitly by

F−1(h(Fξ(ξT ))).

4.2. Example when F is the cdf of a put option and there is one constraint.

Consider a put option with strike K and maturity T , its payoff is XT = (K − ST )
+. The cost

efficient strategy was found in Bernard and Boyle (2010). We first recall their result and study
the effect of adding the probability constraint. Let F be the cdf of the payoff of the put option.
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Bernard and Boyle (2010) show that the put option is the (a.s.) unique payoff that has the highest
possible cost with cdf F . This cdf, F , is

F (x) = P (XT � x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x � K

P (ST > K − x) = Φ

((
μ−σ2

2

)
T−log

(
K−x
S0

)

σ
√
T

)
if 0 � x < K

0 if x < 0

It is straightforward to invert it. Define ν = Φ

((
μ−σ2

2

)
T−log

(
K
S0

)

σ
√
T

)
and consider y ∈ (0, 1),

F−1(y) =

(
K − S0e

(
μ−σ2

2

)
T−σ

√
TΦ−1(y)

)+

Note that F−1(1) = K and F−1(0) is not well defined. The cost-efficient payoff that gives the
same distribution as a put option is

Y �
T = F−1 (1− Fξ (ξT )) =

(
K − S0e

(
μ−σ2

2

)
T−σ

√
T
(

M−log(ξT )

θ
√

T

))+

=
K

ST

(
ST − c

K

)+

,

where Fξ is given by (5) (see Theorem 2.1) and where c = S2
0e

2
(
μ−σ2

2

)
T . Y �

T is the optimal solution
to (P1) (cheapest strategy with cdf F ). We now want the cheapest strategy XT with cdf F and

P (XT > b ; ST < 0.95S0 ) = ε

Panel A Panel B

Figure 1: Panel A corresponds to the support of the copula La,b,ϑ given by (19). This is an extract
from Fig. 3.10 in Nelsen (2006). Panel B displays the cheapest strategy as a function of ST

under the probability constraint under study. Assumptions for Panel B are: S0 = 100, K = 100,
μ = 0.05, σ = 0.2, T = 1, r = 0.03, b = K/7 and ε = .15.

Panel B in Figure 1 illustrates the optimum.
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4.3. Example when F is the cdf of a put option and there is an infinite number of constraints

With several probability constraints, we can solve (P2) using the general result in Theorem 3.3.
Assume that for all (a, b) ∈ I , the copula between ξT and XT is comonotonic and therefore the
copula between XT and ST is anti-comonotonic.

C(a, b) = min(a, b)

where I is the segment with extremities (0.7, 0.7) and (1, 1). The constraint on the copula applies
for ST ≤ 92.8 and XT ≥ 7.21 = F−1(0.7). We are looking for the cheapest strategy XT with cdf
F and XT is anti-comonotonic with the stock market when the stock price is low.

The following figure gives the support of the copula L and the optimal strategy.

Panel A Panel B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5
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0.8

0.9

1

u

v

80 90 100 110 120 130 140 150 160
0

5

10

15

20

25

S
T

X
T*

Figure 2: Panel A: Support of the lower bound of the copula between ST and XT . Panel B:
Optimal Strategy under State-Dependent Constraint. Assumptions: S0 = 100, K = 100, μ = 0.05,
σ = 0.2, T = 1, r = 0.03.

Note that Panels B of Figure 1 and Figure 2 both display an optimal strategy under probability
constraints that is not non-decreasing with respect to the underlying ST .

5. CONCLUSIONS

This paper presents optimal investment strategies in the presence of state-dependent constraints.
Similarly as Bernard and Boyle (2010) the assumption is that one knows the cdf of terminal wealth
and one wants to reach this objective cdf at the cheapest possible cost given some probability
constraints. Investors with law-invariant preferences will solely invest in strategies that are non-
decreasing in the underlying risky asset. In the presence of probability constraints, non-decreasing
strategies in the risky asset are not necessarily optimal.
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