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IMPROVING THE DESIGN OF FINANCIAL PRODUCTS

IN A MULTIDIMENSIONAL BLACK-SCHOLES MARKET
Carole Bernard,* Mateusz Maj,† and Steven Vanduffel‡

ABSTRACT

Using various techniques, authors have shown that in one-dimensional markets, complex (path-
dependent) contracts are generally not optimal for rational consumers. In this paper we generalize
these results to a multidimensional Black-Scholes market. In such a market, we discuss optimal
contracts for investors who prefer more to less and have a fixed investment horizon T � 0. First,
given a desired probability distribution, we give an explicit form of the optimal contract that
provides this distribution to the consumer. Second, in the case of risk-averse investors, we are able
to propose two ways of improving the design of financial products. In all cases, the optimal payoff
can be seen as a path-independent European option that is written on the so-called market port-
folio. We illustrate the theory with a few well-known securities and strategies. For example, we
show that a buy-and-hold investment strategy can be dominated by a series of power options
written on the underlying market portfolio. We also analyze the inefficiency of a widely used
portfolio insurance strategy called Constant Proportion Portfolio Insurance.

1. INTRODUCTION

Equity-linked contracts that combine life-contingent benefits with financial benefits are popular in
many insurance markets. They propose mortality benefits and capital protection with the potential for
high returns if the market performs well. In a typical equity-indexed annuity, the consumer pays an
initial amount to the insurance company. At the maturity date, the payoff to the investor is usually
linked in a complicated way to the performance of some designated reference indices. In North America,
the two main different types of equity-linked products sold by insurance companies are variable an-
nuities and equity-indexed annuities. Insurance companies also use these complex payoff profiles in the
management of their own assets and liabilities. For example a so-called Constant Proportion Portfolio
Insurance (CPPI) strategy, which aims to protect the value of the company’s investment portfolio while
benefiting from increasing markets, gives rise to payoffs that are of the same complexity as equity-
indexed annuity payoffs.

Dybvig (1988a,b) introduced an interesting concept to compare strategies without having to refer
explicitly to the individual’s preferences. With a focus on the one-dimensional market he showed that
there could be several strategies with the same distribution at maturity but with different initial costs.
A strategy is cost efficient if it is not possible to find another strategy that provides the same distri-
bution of wealth at maturity at a strictly lower cost. The key result is that among all payoffs that have
the same terminal wealth distribution, there is one path-independent payoff that will have a strictly
lower cost than all others. Clearly this payoff will be preferred by all profit-seeking investors. For more
details, see Dybvig (1988a,b) and Bernard and Boyle (2010), who provide an explicit representation of
the optimal payoff to achieve a given distribution. Using other techniques, Cox and Leland (1982,
2000) showed that in a one dimensional Black-Scholes market path-dependent strategies are never

* Carole Bernard, University of Waterloo, c3bernar@uwaterloo.ca.
† Mateusz Maj, Vrije Universiteit Brussel, mateusz.maj@vub.ac.be.
‡ Steven Vanduffel, Vrije Universiteit Brussel, steven.vanduffel@vub.ac.be.



78 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 15, NUMBER 1

optimal for risk-averse investors who have a fixed investment maturity. Based on an idea of Vanduffel
(2005, p. 27), Vanduffel et al. (2009) extended the latter study to one-dimensional Lévy markets. In
this paper, we extend some of these results to a multidimensional Black-Scholes market, that is, when
the price processes are governed by correlated geometric Brownian motions. In particular, we make
the following contributions.

First, for any given payoff we provide an explicit characterization of a new payoff that will be preferred
by all profit-seeking decision makers in a multidimensional Black-Scholes market. This dominating
payoff can be interpreted as a European path-independent option that is written on the so-called market
portfolio.

Second, we propose an alternative way to build a European path-independent contract suitable for
risk-averse investors.

Third, for any given risk-averse Von Neuman–Morgenstern decision maker we construct explicitly an
optimal path-independent payoff. In this sense we complement the analysis of Merton (1969), whose
analysis showed (among many other results) that in the case of an investor with constant relative risk
aversion (a so-called CRRA investor) the optimal payoff effectively consists of purchasing a particular
European power option written on the market portfolio.

Fourth, we analyze the efficiency of several payoffs. We briefly discuss a payoff obtained by pursuing
a buy-and-hold strategy of the available assets and show that this strategy is never optimal in a multi-
dimensional Black-Scholes market. We explicitly derive the dominating payoff from the point of view
of all risk-averse investors, and it turns out that it can be interpreted as a series of power options
written on the market portfolio. We also analyze CPPI strategies and discuss Margrabe options.

To summarize, in this paper we essentially show that in a multidimensional Black-Scholes market
path-dependent payoffs are suboptimal, and we provide explicit characterizations of dominating (path-
independent) payoffs. The suboptimality of path-dependent claims is valid only if the state-price process
in the financial market is itself path independent and continuously distributed (as it is the case in our
setting). In other words, our results do not necessarily hold in a discrete-time market model or in the
presence of stochastic interest rates or stochastic volatility (which would make the state-price process
path dependent).

The paper is structured as follows. In Section 2 we describe the multidimensional Black-Scholes
market and the market portfolio, and we explain how to price in a multidimensional Black-Scholes
market. Next, in Section 3 we analyze the efficiency of payoffs. In Section 4 we illustrate the theoretical
results, and Section 5 concludes.

2. MULTIDIMENSIONAL BLACK-SCHOLES MARKETS

In this section we recall what a multidimensional Black-Scholes market is, how the ‘‘market portfolio’’
is defined, and how it relates to the optimal portfolio for a mean variance investor. Finally we explain
how the market portfolio can be used to price in the multidimensional Black-Scholes market. Most
results in this section are quite standard and can be found, for instance, in Dhaene et al. (2005) and
Björk (2004).

2.1 Description
Consider the classical continuous-time framework that was pioneered by Merton (1969, 1971) and is
nowadays mostly referred to as the Black and Scholes (1973) setting. To this end, let us assume that
the market is frictionless, trading is continuous, and there is a constant continuously compounded
risk-free interest r � 0. There are also no taxes, no transaction costs, no dividends, and no restriction
on borrowing or short sales, and the m risky assets are perfectly divisible. Let � denote the physical
probability measure. Let Si(0) � 0 be the current price, at time 0, of one unit of the risky asset i, and
Si(t) is its price at time t. Assume that the prices Si(t)(i � 1, 2, . . . , m) are geometric Brownian
motions.
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They evolve according to the following stochastic differential equations:
idS (t) i� � dt � � dB (t), i � 1, 2, . . . , m. (1)i iiS (t)

The m-dimensional vector �T � (�1 . . . �m) is called the drift vector of the risky assets. We will
assume that � � r 1, with 1T � (1 1 . . . 1). Furthermore the processes {Bi(t), t � 0}, i � 1, . . . , m
are (correlated) standard Brownian motions, with constant correlation coefficients �ij:

i j∀t, s � 0, � � Corr(B (t), B (t � s)). (2)ij

Furthermore, we also define a (m � m) matrix � as
2� � . . . �1 12 1m

2� � . . . �21 2 2m� , (3)� . . . . . . . . . . . .� �2� � . . . �m1 m2 m

where �ij � �ij�i�i. Note that �ij � �ji and that �ii � and it is also assumed that � is positive definite.2� ,i

It is well known that the solution to equation (1) for i � 1, . . . , m is
i i iS (t) � S (0) exp(X (t)), t � 0, (4)

where

1i 2 iX (t) � � � � t � � B (t). (5)� �i i i2

Also it is easily seen that the elements of the matrix � describe the covariances between the yearly log-
returns Xi(k) � Xi(k � 1) of the m assets (i � 1, 2, . . . , m), and k is a positive integer.

2.2 The Market Portfolio
We first recall the definition of a constant mix strategy. It is later needed to derive the market portfolio
and to characterize optimal strategies. A strategy at time t is denoted by �(t)T � (�1(t), �2(t), . . . ,
�m(t)), where �i(t) is the fraction of the wealth that is invested in risky asset i at time t. The residual,
1 � �i(t), is invested in the risk-free asset, which grows at the constant continuously compoundedn�i�1

interest rate r or, if negative, finances the risky asset purchases. A constant portfolio �(t) � � � (�1,
�2, . . . , �m)T, where the fractions invested in the different assets remain constant over time, is called
a constant mix strategy.

It follows that under the �-measure the dynamics of the price process {S�(t), t � 0} of the security
that is constructed according to a nonzero vector � is given by

m m� idS (t) dS (t)
� � � 1 � � rdt� �� �i iiS(t) S (t)i�1 i�1 (6)

m m
i� � (� � r) � r dt � � � dB (t).� �� �i i i i

i�1 i�1

It is easy to see that (6) can be recast as
�dS (t)

�� �(�)dt � �(�)dB (t), (7)
S(t)

where {B�(t), t � 0} is a standard Brownian motion defined through
m1

� iB (t) � � � B (t), (8)� i iT�� � � � � i�1



80 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 15, NUMBER 1

with �(�) and �2(�) given by

T 2 T�(�) � r � � � (� � r1), and � (�) � � � � � �, (9)

respectively, and where 1 is the m-vector (1 1 . . . 1)T. Recall that the solution to equation (7) is

� � �S (t) � S (0) exp(X (t)), (10)

with

1
� 2 �X (t) � �(�) � � (�) t � �(�)B (t). (11)� �2

The following result is well known; see also Dhaene et al. (2005).

Proposition 1 (Market Portfolio)
Assume that 1T � ��1 � (� � r1) � 0 and � � 0. The solution of the following mean-variance optimization
problem

max �(�) subject to �(�) � � (12)
�

is denoted by �� and is given by

�
� �1� � � � (� � r1). (13)

T �1�(� � r1) � � � (� � r1)

Hence, for the appropriate choice of �, there will be a unique mean-variance efficient portfolio �� fully
invested in the risky assets (1 � �� � 1). We call it the ‘‘market portfolio’’ and denote it by �*:

�1� � (� � r1)
�* � . (14)T �11 � � � (� � r1)

From (9) it follows then that �� �(�*) and �� �2(�*) are now given by2� �* *

T �1(� � r1) � � � (� � r1)
� � r � (15)T �1* 1 � � � (� � r1)

and

T �1(� � r1) � � � (� � r1)2� � . (16)T �1 2* (1 � � � (� � r1))

Note that from (8) and(14) it also follows that
T�1� � (� � r1)

�* i iCov[� B (t), � B (t)] � � � � 1 t� �i T �1* 1 � � � (� � r1)

� � ri� t, (17)T �11 � � � (� � r1)

where 1i is used to denote a m � 1 vector with value 1 in the ith row and zero elsewhere.
The label ‘‘market portfolio’’ will also be used to refer to the security with price process {S�*(t),

t � 0}. Note that the condition 1T � ��1 � (� � r1) � 0 makes sense economically. Indeed, it can be
shown that the so-called minimal variance portfolio �m, which is the solution of the problem

TMin �(�) subject to 1 � � � 1, (18)�
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has a drift �(�m) that is given by
T �11 � � � �m�(� ) � , (19)T �11 � � � 1

so that �(�m) � r if and only if 1T � ��1 � (� � r1) � 0, suggesting that in financial markets the
condition 1T � ��1 � (� � r1) � 0 should indeed hold (see also Dhaene et al. 2005 for further
interpretation).

Finally, for any constant mix strategy � the coefficient �(�) defined as

�(�) � r
�(�) � (20)

�(�)

is called the market price of risk or Sharpe ratio of the constant mix portfolio �. In the remainder of
the paper we will always assume that the condition 1T � ��1 � (� � r1) � 0 is fulfilled. Then it follows
from (15) that

� �� �(�*) � 0. (21)*

2.3 Pricing in a Multidimensional Black-Scholes Market
It is well known that the multidimensional market described above is arbitrage free and complete. Let
{�t, t � 0} be the natural filtration generated by the m assets prices Si(t)(i � 1, 2, . . . , m) and let
us recall that the market is equipped with a physical probability measure �. We now define the state-
price process.

Definition 1 (State-Price Process)
If the stochastic process {�(t), t � 0} is such that for each i � 1, 2, . . . , m the process {�(t)Si(t),
t � 0} is a martingale with respect to the filtration {�t, t � 0} and the measure �, then we call {�(t),
t � 0} a state-price process.

Consider a strategy with a �T -measurable payoff H(T) paid at time T. Its initial price is equal to

c(H(T)) � E [�(T)H(T)], (22)�

where E� is the expectation under the physical probability measure �. We assume that c(H(T))is well
defined and finite. The following proposition provides a state-price process {�(t), t � 0} for the mul-
tidimensional Black-Scholes market as outlined above.

Proposition 2 (State-Price Process for a Black-Scholes Market)
The process {�(t), t � 0} with �(t) � e�rt is the state-price process where �* corresponds to2 �*� /2t�� B (t)**e
the market portfolio (given by [14]). Then the state price �(t) can be written as an explicit function of
the market portfolio price *�S (t):

�b�*S (t)
�(t) � a � , (23)� ��*S (0)

where a � exp � /2)t � (r � /2)t) and b �2 2(� /� (� � � � /� .* * * * * * *

PROOF

The proof of Proposition 2 is given in the Appendix. Similar concepts are discussed in sections 14.6
and 14.7 of Björk (2004) and in Duffie (1992). �

Proposition 2 gives the link between the state-price process and the market portfolio. This link is
going to be a key result toward the optimality of financial payoffs.
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The state-price process is also tied to the change of measure from the historical probability � to the
unique risk-neutral probability � (in the arbitrage-free and complete multidimensional Black-Scholes
market). Indeed, it is well known that the initial price of a financial derivative can also be seen to be
the expectation of the discounted payoff under the risk-neutral probability; that is, the initial price of
the payoff H(T) can also be expressed as

�rTc(H(T)) � E [e H(T)]. (24)�

Comparing (22) and (24), it is then clear that �(T) � e�rT d�/d�; in particular we have that

�rTE [e H(T)] � E [�(T)H(T)]. (25)� �

We refer to Harrison and Kreps (1979), Harrison and Pliska (1981), and Björk (2004) for extensive
theory on arbitrage-free pricing.

3. OPTIMAL PAYOFFS

To improve the design of financial products in a multidimensional market, we are going to extend the
results from Bernard and Boyle (2010) and Vanduffel et al. (2009). To this end we first define the
concept of cost efficiency.

Definition 2 (Cost Efficiency)
A strategy with payoff H(T) at maturity T is cost efficient if it is not possible to construct another strategy
(payoff ) that generates the same distribution at T (under �) but at a lower cost.

This concept was first introduced by Dybvig (1988a,b). In the following, we present Theorem 1 for
profit-seeking investors and Theorem 2 for risk-averse investors. Both results explain how, starting from
a strategy generating a payoff H(T) that is not a function of the market portfolio at time T, it is
possible to strictly improve the ‘‘design’’ of H(T) from the investor’s perspective by considering some
strategies that directly depend on the market portfolio.

3.1 The Case of Profit-Seeking Investors
Consider a random variable X with distribution F, where F is right-continuous and nondecreasing. We
define its inverse F�1 as

�1F ( y) � min {x 	F(x) � y}.

Theorem 1 (Given Payoff ⇒ Cheapest Payoff with the Same Distribution)
Consider a payoff H(T) with distribution function F (under �), which is assumed to be strictly increasing.
Consider the payoff Z*(T) given as

�1 �*Z*(T) � F (F (S (T))). (26)�*S (T )

Then the payoff Z*(T) will have F as its �-distribution function. Further, it will hold that

c(Z*(T)) 	 c(H(T)). (27)

Finally, Z*(T) is the almost surely unique way to achieve the cheapest payoff with distribution F at
time T.

PROOF

This follows from Theorem 1 of Bernard and Boyle (2010), which for general markets relates cost
efficiency to the state price �(T), and Proposition 2, which expresses the state price �(T) as an explicit
function of the market portfolio price See the Appendix for a more detailed proof. ��S (T).*
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This result is consistent with the previous literature on this topic. Actually, expression (26), char-
acterizing cost-efficient payoffs for a given distribution, can also be traced back to Dybvig (1988a,
Theorem 1), who proved the optimality of Z*(T) in the context of a complete one-dimensional market.
More recently Vanduffel et al. (2009) extended Dybvig’s result to incomplete one-dimensional Lévy
markets. Here we characterize optimal payoffs in multidimensional Black-Scholes markets.

Theorem 1 has important consequences in terms of optimal investment strategies for profit-seeking
investors with a fixed investment horizon. More specifically, for a fixed initial budget (cost), let X(T)
be the final wealth of the investor resulting from an investment strategy. Let us then assume that the
objective function of the investor, V(X(T)), satisfies the three following properties:

• The investor has a fixed investment horizon, and there is no intermediate consumption.1

• The investor prefers ‘‘more to less,’’ that is, V preserves first-order stochastic dominance relationships
(denoted by �fsd). If Y(T) �fsd X(T), then V(X(T)) � V(Y(T)).

• The investor has ‘‘state-independent preferences’’ or ‘‘law-invariant preferences’’: If Z(T) has the same
distribution as W(T), then V(Z(T)) � V(W(T)).

Under these three fairly general assumptions, and taking into account the initial cost of purchasing
a payoff, it follows immediately that the cost-efficient payoff will be preferred to any other payoff that
has the same distribution. The stated assumptions on agents’ preferences are similar to those used by
Dybvig (1988a,b). Such preferences include a wide range of decision theories, among them the ex-
pected utility theory (Von Neuman and Morgenstern 1947), Yaari’s dual theory of choice under risk
(Yaari 1987), and more recent behavioral theories such as the cumulative prospect theory (Tversky and
Kahneman 1992) and the rank-dependent utility theory (Quiggin 1993).

Finally, note that the dominating payoff Z*(T) from Theorem 1 can be seen as a European path-
independent derivative written on the market portfolio. Therefore the theorem essentially states that
for a given payoff H(T) one can find a path-independent alternative Z*(T) that will be preferred by all
profit-seeking decision makers, also meaning that no utility function needs to be specified to construct
the dominating alternative.

3.2 The Case of Risk-Averse Investors
Cox and Leland (1982, 2000) employed stochastic control theory to show that in one-dimensional
Black-Scholes markets risk-averse decision makers with a fixed investment horizon prefer path-
independent payoffs over path-dependent payoffs. Vanduffel et al. (2009) extended these results to one-
dimensional Lévy markets. The corresponding results holding for multidimensional Black-Scholes mar-
kets did not appear yet in the literature.

Theorem 2 (A Given Payoff ⇒ Less Risky Payoff at the Same Cost)
Let H(T) be the payoff of a given strategy. Define

�*H*(T) � E [H(T) 	S (T)]. (28)�

Then H*(T) has the same cost as H(T):

c(H*(T)) � c(H(T)), (29)

and H*(T) dominates H(T) in the sense of second-order stochastic dominance.

PROOF

Note that for the sake of simplicity, we write E[X 	Y] instead of E[X 	�(Y)], where �(Y) denotes the �-
field generated by the random variable Y. From the relationship (23) between �(T) and it is�*S (T),

1 Note that our results can be generalized to the case when T is random if the random maturity time is independent from the financial market.
It could be the time of death of the investor, for example. Proofs should then be slightly modified, and one has to use conditioning with
respect to 
 first.
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clear that �(�(T)) � and therefore it is also clear that the payoff H*(T) can also be expressed�*�(S (T)),
as H*(T) � E� [H(T) 	�(T)]. The fact that H*(T) has the same cost as H(T) now follows from the
definition of the initial price (22) and the tower property for expectations directly. Formally:

c(H(T)) � E [�(T)H(T)]�

� E [E [�(T)H(T) 	�(T)]]� �

� E [�(T)E [H(T) 	�(T)]]� �

� c(H*(T)). (30)

Finally, the fact that the payoff H*(T) dominates H(T) in the sense of second-order stochastic dom-
inance is well known and is a direct application of Jensen’s famous inequality. �

The theorem has some important implications for the class of risk-averse decision makers. Indeed,
for a fixed initial budget (cost), let X(T) be the final wealth (payoff ) of the investor resulting from a
particular investment strategy. We assume that the objective function of the investor, V(X(T)), now
satisfies the following three properties:

• The investor has a fixed investment horizon, and there is no intermediate consumption.
• The investor is ‘‘risk averse,’’ that is, V preserves second-order stochastic dominance relationships.

If Y(T) �ssd X(T), then V(X(T)) � V(Y(T)).
• The agent has ‘‘state-independent preferences’’ or ‘‘law-invariant preferences’’: If Z(T) has the same

distribution as W(T), then V(Z(T)) � V(W(T)).

Since we have found that c(H*(T)) � c(H(T)), it follows directly that H*(T) � c(H*(T)) dominates
H(T) � c(H(T)) in the second-order stochastic dominance. Hence our investor will always prefer the
‘‘less risky’’ payoff H*(T) above the original payoff H(T). Or to put it differently, the payoff H*(T)is at
least as good as H(T) for all risk-averse investors.

Note that the stated preferences are those of risk-averse decision makers in expected utility theory
(Von Neuman and Morgenstern 1947) and Yaari’s dual theory of choice under risk (Yaari 1987).

We also remark that this dominating payoff H*(T) is by definition of the conditional expectation a
measurable function of the market portfolio and hence can also be seen as a European path-�*S (T)
independent derivative written on the market portfolio. Therefore the theorem states that for a given
payoff H(T) one can find a path-independent alternative H*(T) that will be preferred by all risk-averse
decision makers, and no utility function needs to be specified to construct H*(T). It is then also clear
that Theorems 1 and 2 both provide ways to improve the design of financial derivatives by having a
strategy whose payoff simply depends on the value of the market portfolio at maturity T (which there-
fore is a path-independent payoff ).

However, it is only when H*(T) is an increasing function of that it will lead to a cost-efficient�*S (T)
contract in the sense of definition 2. In fact, the following remark can be made.

REMARK 1 (CONNECTIONS BETWEEN H*(T) AND Z*(T))

Consider the final payoff H(T) of the contract, as well as the dominating alternatives Z*(T) from Theorem
1 and H*(T) from Theorem 2, respectively. Then it holds that

• Z*(T) and H*(T) are different unless the original payoff H(T) is an increasing function of In�*S (T).
this case X(T) � H*(T) � Z*(T) a.s.

• Z*(T) has the same distribution as H(T) but a lower cost, whereas H*(T) has a possibly different
distribution from H(T) but the same initial cost.

• In general H*(T) is not cost efficient. It is cost efficient if and only if it is an increasing function of
�*S (T).
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Regarding the optimality of single-asset payoffs, the following remark can be made.

REMARK 2 (SUBOPTIMALITY OF ANY SINGLE-ASSET PAYOFF )

In a multidimensional Black-Scholes market (m � 1) any single-asset payoff H(T) � withih(S (t) )[0�t	T]

a given i � {1, 2, . . . , m} is dominated by E�[H(T) 	 In particular, even while H(T) could be�*S (T).
optimal for a risk-averse decision maker in the context of a one-dimensional Black-Scholes market gov-
erned by the risky asset Si(t), it is suboptimal in the given multidimensional market.

From the remark we conclude that in a one-dimensional Black-Scholes market one can find for a
given payoff H(T) a new payoff E�[H(T) 	S1(T)], which is robust in the sense that all risk-averse decision
makers, irrespective of the precise form of the concave utility function they use and irrespective of
their subjective choices for the drift parameter �1, will prefer E�[H(T) 	S1(T)] above H(T). Note that
this cannot be readily generalized to the multidimensional case directly because the weights (i � 1,�*i
2, . . . , m) depend on the �i (see [14]).

3.3 Optimal Payoffs
While Theorem 1 explains how to construct the cheapest strategy to achieve a given distribution F,
Theorem 2 implies that only path-independent payoffs are relevant to the risk-averse decision makers,
but it does not tell us which payoffs are optimal for a given investor.

Given specific preferences of the investor, there is an optimal final wealth and therefore an optimal
probability distribution at maturity. In this section, for a given risk-averse Von Neuman–Morgenstern
decision maker (with a specific utility function), we give an explicit form of the ‘‘best’’ path-
independent payoff. We then verify that it is cost efficient and that it cannot be improved.

Theorem 3 (Risk-Averse Decision Maker ⇒ Optimal Payoff )
Consider a risk-averse decision maker with utility function x → u(x) and initial wealth W0. Let us assume
that u(x) is continuously differentiable with strictly decreasing derivative u�(x). Then we find that the
optimal payoff H*(T) is given by

�*H*(T) � h*(S (T)) (31)

with x → h*(x) given by
�1 �� /�* *h*(x) � (u�) (c � x ), (32)

where � � and c � 0 is such that it holds that� � r/� ,* * *
�*W � E [�(T)h*(S (T))]. (33)0 �

PROOF

The proof is given in the Appendix. �
Theorem 3 allows us to describe the optimal portfolio for any risk-averse decision maker in a mul-

tidimensional Black-Scholes market. The optimal payoff H*(T) will be a function of the terminal value
of the market portfolio �*, and we provide the link function x → h*(x) explicitly. Note that the�*S (T)

concavity of u and the positivity of imply that h* is indeed an increasing function of and�*� S (T),*
therefore from Theorem 1, it is cost efficient.

We are now ready to derive Merton’s optimal solution as a special case (see Merton 1969).

EXAMPLE 1 (MERTON’S OPTIMAL PORTFOLIO FOR THE CRRA INVESTOR)

Let us assume that the investor is exhibiting constant relative risk aversion (CRRA investor), that is, we
have that

1��x
u(x) � for � � 0, � � 1

1 � �

� log(x) for � � 1. (34)
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Because u�(x) � x�� it follows from Theorem 3 that
�1/� �* 1/� � /�* *H*(T) � c � (S (T)) , (35)

where c is the appropriate constant2 chosen such that

W � E [�(T)H*(T)] (36)0 �

holds. Hence it follows that H*(T) is the payoff of a constant mix strategy characterized by :�*

�* (T )
H*(T) � W � exp(X ). (37)0

Here � 
�* with 
 given by�*


1 �*
 � . (38)
� �*

PROOF

The proof of (37) is shown in the Appendix. �
Example 1 shows that all CRRA investors apply a constant mix strategy where they invest a proportion

equal to 
 � 1/� in the market portfolio �* and the remaining part 1 � 
 in the risk-free asset,� /�* *
and note that this proportion 
 will be inversely related to the investor’s level of risk aversion �; see
Merton (1969). Note that H*(T) can also be considered as the payoff of a European power call option
written on the underlying market portfolio with zero strike.

4. ILLUSTRATIONS

We illustrate the study with three examples. First, we discuss buy-and-hold strategies and illustrate how
inefficient they are and how they can be dominated. We then discuss why Margrabe exchange options
are not optimal and how better contracts can be constructed. Finally a popular portfolio insurance
strategy is investigated.

4.1 Buy-and-Hold Strategies
In this section we will discuss the inefficiency of a buy-and-hold strategy and show that it can be
dominated by purchasing a series of power options with zero strike. To this end let us consider the
payoff H(T) given by

m m
iX (T ) rTH(T) � W 
 e � 1 � 
 e , (39)� �� � � �0 i i

i�1 i�1

where the random variables Xi(T) are representing the N((�i � T, T)(i � 1, 2, . . . , m)2 2� /2) �i i

distributed log-returns over the period [0,T]. The payoff H(T) can be seen as the result of a buy-and-
hold strategy evaluated at the end of the investment horizon T, where at time t � 0, one invests 
i in
the ith risky asset and 1 � 
i in the riskless asset and where one does not trade afterwards.m�i�1

In general the distribution of H(T) is a sum of lognormal distributions, and it is not a well-known
distribution. Therefore we will not get a closed-form expression of the cost-efficient payoff Z*(T) ob-
tained in Theorem 1, although we could approximate it by way of Monte Carlo techniques. It is inter-
esting to see that the conditional expectation defined in Theorem 2 can be explicitly calculated. Hence
let us consider next the path-independent payoff H*(T) �� E�[H(T) 	 (T)]. Note that when Y � eX�*X
follows a lognormal distribution, E[Y 	�] is simply exp(E[X 	�] � Var[X 	�]). Therefore using prop-1–2
erties of multivariate normal distributions we find that H*(T) is equal to

2 In practice, this constant can be obtained numerically.
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m m
� �1/2� rTi iH*(T) � W � 
 e � W � 1 � 
 e , (40)� �� �0 i 0 i

i�1 i�1

where �i � E�[Xi(T) 	 (T)] and �i � Var�[Xi(T) 	 (T)]. For i � {1, 2, . . . , m}, one has�* �*X X

i �*Cov [X (T), X (T)]�i �* �*� � E [X (T)] � (X (T) � E [X (T)]),i � ��*Var [X (T)]�

2 i �*Cov [X (T), X (T)]�i
� � Var [X (T)] � .i � �*Var [X (T)]� (41)

Hence, using the notation introduced before we find that the buy-and-hold payoff H(T) can be domi-
nated by H*(T):

m m
�*b X (T ) c rTi iH*(T) � W 
 e (e ) � W 1 � 
 e , (42)� �� �0 i 0 i

i�1 i�1

with constants bi and ci (i � 1, 2, . . . , m) given by

2 2� � � 1i i 2 2*b � � � � � � � � (1 � � )� T, (43)�� � � � �i i i i i*2 � 2 2*

and

�ic � � , (44)i i �*

respectively, where �i � Corr�[Xi(T), (T)]. Note that bi can also be determined from�*X

2� � 1i 2 2*b � r � � r � � � � T. (45)� � � �i i i i� 2 2*

Hence the optimal payoff H*(T) depends only on the drift parameters �i(i � 1, 2, . . . , m) through
the weights of the market portfolio.�*i

By substituting in expression (42) the component by / we see that H*(T) can also
*� (T )X �* �*e S (T) S (0),

be interpreted as a weighted sum of power options with strike 0 written on the market portfolio.
As a special case, it is in general not optimal to hold an equally weighted portfolio with 1/m of the

wealth in each asset. This portfolio is indeed dominated by the payoff (42) where 
i � 1/m.

CASE WITH TWO ASSETS AND A RISKY PORTFOLIO

For example, let us take T � 1, m � 2, W0 � 1, and 
1 � 
2 � 1. Further, we consider drift parameters
�1 � 0.06 and �2 � 0.10, volatilities �1 � 0.10 and �2 � 0.20, and as correlation coefficient between
the two risky assets we take � � 0.5. The risk-free rate r is equal to 0.03. From (14) we find that the
market portfolio is determined by �* � (5/9, 4/9). Moreover, the log-return (1) has a drift�*X

� 7/90 and a volatility � 1/30 We also find that b1 � 14/1075, c1 � 27/43,� � �43/3.* *
b2 � �5/258, and c2 � 63/43. Hence, the buy-and-hold payoff H(1) can be dominated by the following
payoff:

�*X (1) �*�* 14/1075)(e 27/43 �5/258 X (1) 63/43E [H(1) 	X (1)] � 
 (e ) � 
 (e )(e ) . (46)� 1 2

CASE OF A PORTFOLIO CONSTITUTED WITH ONE STOCK

As a special case, in a multidimensional Black-Scholes market investing in a portfolio with a single
stock is not optimal:



88 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 15, NUMBER 1

1X (T ) rTH(T) � W (
e � (1 � 
)e ). (47)0

There are several ways to dominate this strategy with payoff H(T) using Theorem 1 or Theorem 2. In
our example, there are m assets, and the wealth is invested in the first risky asset and in the bond.
Then it is possible to calculate explicitly the cost-efficient payoff (Theorem 1) as well as the conditional
expectation (Theorem 2). We are going to calculate explicitly both and compare them graphically.
Applying Theorem 1,we have that the cheapest way to achieve the distribution F of H(T) is the payoff

�1 �*Z*(T) � F (F (S (T))).�*S (T )

Because � � � /2)T � one has*�* �* 2 �ln(S (T)) ln(S (0)) (� � � B (T),* * *
2�

�* *ln (x/S (0)) � � � T� �* 2∀x � 0, F (x) � � . (48)�*S (T ) � �
� �T*

Let us calculate F(x) � P(H(T) 	 x) and its inverse. There are two cases. When 
 � 0, the cdf of H(T)
is equal to

rT0 if x � W (1 � 
)e ,0

rT 2x (1 � 
)e �1F(x) � (49)ln � � � � T� � � �1
W 
 2� otherwise.0
 � �
� �T1

Then, for y � (0, 1)

0 if y � 0
�1F ( y) � 2�1rT �1
(1 � 
)e W � 
W exp � ( y)� �T � � � T if y � 0.� � � �0 0 1 1 2

When 
 � 0, then
rT1 if x � W (1 � 
)e ,0

2
W �0 1ln � � � TF(x) � (50)� � � �1rTx � (1 � 
)W e 2� otherwise.0
 � �
� �T1

Then, for y � (0, 1),
rT(1 � 
)W e if y � 10

�1F ( y) � (51)2�1rT �1
(1 � 
)e W � 
W exp � � T � � �T� ( y) if y � 1.�� � �0 0 1 12

When 
 � 0, Z*(T) is computed using the same expression as before, Z*(T) � F�1 �*(F (S (T))),�*S (T )

but where F�1 is calculated using the formula (51).
Applying Theorem 2, and using the expressions of c1 and b1 given by (43) and (44), one knows that

�*b X (T ) c rT1 1H*(T) � W 
e (e ) � W (1 � 
)e0 0

dominates H(T) for risk-averse investors and has the same cost as H(T). This expression is valid for all

 � �.

When 
 � 0, since c1 � 0 it is cost efficient. In the case when 
 � 0 it can be improved by applying
Theorem 1, and the payoff
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Figure 1
Comparison of Payoffs Z*(T), G*(T) and H*(T) for Buy-and-Hold Strategy with � � 0.5 and

� � �0.5

Note: Parameters are r � 3%, �1 � 0.06, �1 � 0.1, �2 � 0.1, �2 � 0.2, � � 0.5, T � 1 year, W0 � 2. When 
 � 0.5, we represent the two
cost-efficient payoffs H*(T ) and Z*(T ) in the left panel. When 
 � �0.5, we represent the cost-efficient payoff G*(T ) and the inefficient payoff
H*(T ) in the right panel.

�c1�*S (T)b rT1G*(T) � 
W e � W e (1 � 
) (52)� �0 0�*S (0)

dominates in the sense of first stochastic dominance of the payoff H*(T). The proof of (52) is given in
the Appendix.

In Figure 1 we give a numerical illustration. Assume that the market has two assets and use the
same parameters as in the previous example. In particular, � 1/30 and � 7.90. In the� �43/3 �* *
left panel, we compare Z*(T) and H*(T) in the case when 
 � 0. In the case when 
 � 0, the payoffs
Z*(T), H*(T), and G*(T) are represented in the right panel.

4.2 Margrabe Option
For the sake of simplicity, we derive the formula for the two-dimensional Black and Scholes market.
Let H(T) � max(S1(T) � S2(T), 0) be the payoff of an exchange option where S1 and S2 denote the
two (non-dividend-paying) stocks. There are two sources of uncertainty modeled by two independent
standard Brownian motion B1 and B2 under the physical measure. Without loss of generality one can
assume that under the physical measure,

1dS (t) 1� � dt � � dB (t),1 11S (t)
2dS (t) 2� � dt � � dB (t).2 22S (t)

We also suppose that the stocks do not pay dividends. Using Margrabe’s formula (1978) for the
exchange option in the Black and Scholes framework, it is easy to prove that

�* 1 � 2 �H*(T) � E[H(T) 	S (T)] � S (0)�(d ) � S (0)�(d ),T

and where� �where d � [ln(S (0)/S (0)) � �T/2]/��T, d � [ln(S (0)/S (0)) � �T/2]/��T,1 2 1 2

� � � � � � 2�� � �1 2 1 2 cond
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with �cond � [�12 � �1�2]/ The conditional moments �1, �1, �2, �2 are given by (41) and�� � .1 2

�12 � E[X1(T)X2(T) 	 (T)].�*X
No explicit expression can be obtained for the cdf of H(T), and therefore for Z*(T). Note, however,

that Monte Carlo simulations could be done to compute the payoff Z*(T).

4.3 Constant Proportion Portfolio Insurance

4.3.1 Model Setup
When pursuing a CPPI strategy the investor first determines floor values Ft for his or her portfolio at
future times t, where Ft can be seen as the lowest acceptable value of the portfolio at time t. Here we
will assume that Ft evolves according to a fixed deterministic rate c � 0:

ctF � Fe . (53)t

Next, at each time t one computes the cushion Ct as the excess of the actual portfolio value, denoted
by Vt, over the floor value Ft. The amount allocated to one or more risky assets is called the exposure
Et and is given by the following relation:

lC if C � 0t tE � , (54)�t 0 if C 	 0t

where l � 0 is reflecting the degree of leverage. The remaining proportion Vt � Et will then be invested
in the risk-free account, which is assumed to grow at a fixed rate r � 0.

It is well known that in a one-dimensional Black-Scholes market with continuous trading and without
borrowing restrictions a single-asset CPPI gives rise to a path-independent payoff increasing in the
underlying asset and thus is cost efficient. However, in reality trading occurs at discrete times and may
be subject to borrowing constraints. In this example we will first analyze the performance of a single-
asset CPPI; see also Vanduffel et al. (2009). Next, we will extend this performance analysis to include
a multiasset CPPI structure.

4.3.2 A Single-Asset CPPI
In this section we analyze a one-dimensional Black-Scholes market where a single-asset CPPI applied
on an underlying risky asset with price process {S1(t), t � 0} is available. Furthermore the investor is
trading at discrete times without transactions costs and is not allowed to go short. In particular this
means that the exposure Et will be capped by Vt from above. We will also assume that the rebalancing
occurs on a monthly basis and that there are no transaction costs involved.

The CPPI strategy gives rise to a payoff H(T) at time T, and we apply Monte Carlo methods to
estimate the distribution function F of H(T) in a straightforward way. From Theorem 1 we find that
the cost-efficient payoff Z*(T) will be given by

�1 1Z*(T) � F (F (S (T))). (55)1S (T )

Finally, we apply Monte Carlo simulation under the risk-neutral measure � to derive the approximate
price for Z*(T), and this will give us an insight into the inefficiency cost of the CPPI strategy.

In Table 1 we show the increases in cost (expressed as percentages) for the CPPI payoffs H(T) as
compared to the modified payoff Z*(T). The results are obtained by running 1,000,000 Monte Carlo
simulations. We fixed the parameters c � r � 0.04 and also assumed that �1 � 0.10. From Table 1 we
observe that the inefficiency costs become more pronounced when increasing the standard deviation
�1 for the (log) return of the underlying risky asset, the time horizon T, or the multiplier l. Intuitively
this all makes sense because by doing so the initial payoff H(T) becomes more and more ‘‘chaotic’’
and path dependent, meaning that the realizations vi for H(T) show less tendency to be increasing in
the corresponding realizations si for S1(T), which suggests that the inefficiency is increasing in these
instances.
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Table 1
Inefficiency Cost of Single-Asset CPPI Structure �1 � 0.10, c � r � 0.04

T � 1

l/�1 0.15 0.20 0.25 0.30 0.35
4 0.0121 0.0205 0.0382 0.0653 0.1082
7 0.0572 0.1225 0.2152 0.3181 0.4229

T � 3

l/�1 0.15 0.20 0.25 0.30 0.35
4 0.0803 0.1268 0.2122 0.3187 0.4876
7 0.3529 0.6522 0.9552 1.2169 1.4107

T � 5

l/�1 0.15 0.20 0.25 0.30 0.35
4 0.2195 0.3473 0.5233 0.7490 1.0179
7 0.7095 1.2112 1.6502 1.9881 2.2212

4.3.3 A Multiasset CPPI
Here we consider a so-called hybrid CPPI strategy, which involves an exposure to m different underlying
single-asset CPPIs, each of them written on a risky asset with price process {Si(t), t � 0}, i � 1, . . . ,
m. As before there are no transaction costs, and short selling will not be allowed.

The strategy we consider effectively consists in purchasing at t � 0 a portfolio of single-asset CPPIs.
Next, as time evolves one aims at keeping the initial proportions invested in each of the underlying
CPPIs constant. Hence a periodical rebalancing of the portfolio to maintain the initial weights invested
in the underlying CPPIs will be required; that is, at the end of each period the investment in the better
performing CPPI will be reduced in favor of the investment in the less performing one. As compared
to a standard single-asset CPPI the perceived advantages of such multidimensional CPPI structure are
a lower volatility on the investment return (because of the diversification) and a lower exposure to gap
risk. The cost-efficient payoff Z*(T) is given by

�1 �*Z*(T) � F (F (S (T)), (56)�*S (T )

where F�1 is a quantile function corresponding to the payoff H(T) of the CPPI strategy. As before Monte
Carlo simulation under the risk-neutral measure � is then used to estimate the initial price of the new
structure Z*(T).

For the numerical examples in this section, we choose to analyze a hybrid CPPI, which consists of
pursuing a periodical rebalancing investment strategy in two underlying plain-vanilla CPPIs; that is,
we have that m � 2. Within each CPPI the reallocation occurs on a monthly basis, whereas for the
rebalancing across the CPPIs a six-monthly reallocation scheme has been applied.

We ran 1,000,000 Monte Carlo simulations assessing different values for the time horizon T, the
multiplier l, and the initial weights invested in each CPPI. The drift parameters have been determined
as �1 � 0.08 and �2 � 0.12, whereas for the volatilities we have chosen �1 � 0.20 and �2 � 0.30. For
the correlation between the risky log-returns we take � � 0.25. Finally we have assumed that c � r �
0.04. In Table 2 we show the increases in cost (expressed as percentages) for the hybrid CPPI payoff
H(T) as compared to the modified payoff Z*(T). As documented previously in the one-dimensional
example, the inefficiency costs become more pronounced when increasing the time horizon T or the
multiplier l. As for the impact on the results when varying the constant exposures to the underlying
single-asset CPPIs, we observe that the cost inefficiency is more substantial in the case where most of
the initial wealth has been invested in one of both single-asset CPPIs. Conversely, when the portfolio
insurance weights are more ‘‘balanced,’’ we find that the strategies become more optimal in terms of
cost inefficiency but still remain inferior to the path-independent alternatives.
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Table 2
Ineffciency Cost of Multiasset CPPI Structure

c � r � 0.04, � � (0.08, 0.12), � � (0.2, 0.3), � � 0.25

T � 1

l/weights [0.1 0.9] [0.3 0.7] [0.5 0.5] [0.7 0.3] [0.9 0.1]
4 0.0905 0.0431 0.0284 0.0254 0.1191
7 0.3215 0.2082 0.1417 0.1452 0.2404

T � 3

l/weights [0.1 0.9] [0.3 0.7] [0.5 0.5] [0.7 0.3] [0.9 0.1]
4 0.3978 0.2360 0.1290 0.1619 0.3921
7 1.1905 0.7824 0.5626 0.5864 0.8375

T � 5

l/weights [0.1 0.9] [0.3 0.7] [0.5 0.5] [0.7 0.3] [0.9 0.1]
4 0.7952 0.4921 0.3234 0.3891 0.6583
7 2.0567 1.4078 1.0356 1.0325 1.4904

5. CONCLUSIONS

We have examined the optimality of payoffs in multidimensional Black-Scholes markets from the point
of view of profit-seeking consumers with a fixed investment horizon and who have law-invariant pref-
erences (including the expected utility framework as a special case). In particular we have also assumed
that consumption will happen only at the end of the horizon and not at intermediate times. Under
these assumptions we have shown that path-dependent payoffs are not efficient and that optimal payoffs
can be expressed as path-independent derivatives written on the underlying market portfolio.

Our findings cast doubt on the performance of complex (path-dependent) financial payoffs and mo-
tivate simpler (path-independent) designs for these. However, although the existence of path-
independent payoffs cannot be really justified in the classical utility theory (as well as any law-invariant
framework such as, for instance, Yaari’s dual theory, the cumulative prospect theory, or the rank-
dependent utility theory), it maybe explainable assuming other criteria for decision making. For ex-
ample, Boyle and Tian (2008) consider an investor who aims at outperforming a (stochastic) benchmark
with sufficiently large probability. They show that the optimal payoff for a utility maximizer is not
necessarily the optimal contract in this context. In this study, when the benchmark is random, the
preferences are not law invariant but become state dependent. The results discussed in our paper do
not hold.

APPENDIX

PROOFS

A.1 Proof of Proposition 2

PROOF

We have that
22 �* ii i �rt �� /2t��B (t) (� �1/2� )t�� B (t)i iiE[� S ] � S E[e � e � e ]t t 0

22 �* ii �rt �� /2t (� �1/2� )t ��B (t)��i iB (t)i� S e � e e � E[e ]0

2 2 �* ii �rt �� /2t (� �1/2� )t 1/2Var[��B (t)�� B (t)]i i i� S e � e e � e0

22 2 2 �* ii �rt �� /2t (� �1/2� )t � /2t � /2t ��� �Cov[B (t),B (t)]i i ii� S � e � e � e � e e e0

* �* ii �rt � t ��/�(� )Cov[�(�*)B (t),� B (t)]i i� S � e � e � e . (A.1)0
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Further from (15) and(16) we find that

� T �1� 1 � � � (� � r1), (A.2)
�(�*)

and hence using (17) we find that

i i �rt � t �(� �r)ti iE[� S ] � S � e � e � et t 0

i� S . (A.3)0

This ends the proof. �

A.2 Proof of Theorem 1

PROOF

We now recall Theorem 1 of Bernard and Boyle (2010) that holds in a multidimensional market, and
that gives the explicit representation for cost-efficient strategies.

Theorem 4 (Bernard and Boyle 2010)
Denote by F� the cdf of �T. Let F be a cdf. Define

�1Y* � F (1 � F (� )). (A.4)T � T

Then is distributed with the cdf F. For any other random variable Y with the same cdf F,Y*T
	 c(Y ), which means minimizes the cost of achieving a payoff with distribution F. If in additionc(Y*) Y*T T

� �	, then is the almost surely unique optimal solution to achieve the cheapest payoff withc(Y*) Y*T T

cumulative distribution function F.
This theorem holds because in a multidimensional Black-Scholes market, the state price process is

obviously continuously distributed, which is the key assumption in the derivations of Bernard and Boyle
(2010). In their paper they also discuss the strong connections between cost efficiency and stochastic
dominance, a connection first pointed out by Dybvig (1988).

Theorem 5 (Dybvig 1988)
Consider a payoff H(T) with cdf F. Taking into account the initial cost of the payoff, the cost-efficient
payoff of the payoff H(T) is a.s. equal to H(T) or dominates H(T) in the first-order stochastic domi-Y*T
nance sense. The dominance ordering is strict unless H(T) is a nonincreasing function of �T.

The result of Theorem 1 then holds because is the same variable as 1 � F�(�T). Indeed,*�F (S (T))�*S (T )

they are two comonotonic random variables with a uniform distribution. They have to be equal almost
surely. The comonotonicity comes from the relationship (23) that exists between and �T. ��*S (T)

A.3 Proof of Theorem 3

PROOF

We are confronted with the following optimization problem:

max E [u(H(T))] s.t. W � E [�(T) � H(T)]. (A.5)� 0 �
H(T )

The solution for such an optimization problem (A.5) is well known (see, for instance, Korn 1997,
Chapter 3, Section 4), and one obtains that the unique optimal payoff H*(T) for problem (A.5) is equal
to

�1H*(T) � (u�) (��(T)), (A.6)
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with � determined by

W � E [�(T)H*(T)]. (A.7)0 �

Next, we observe that �(T) can be written as an explicit function of the terminal value of the�*S (T)
market portfolio �* as given by (23) in Proposition 2. Hence we find that H*(T) can also be expressed
as

�*H*(T) � h*(S (T)), (A.8)

with x → h*(x) given by

�1 �� /�
* *h*(x) � (u�) (cx ), (A.9)

where c � 0 is such that

�*W � E [�(T)h*(S (T))]. (A.10)0 �

This ends the proof. �

A.4 Proof of Equation (37) in Example 1

PROOF

To find the exact expression of H*(T), one needs to verify that it satisfies (36) (this problem can also
be solved directly by looking for the constant c involved in the expression (35) of H*(T)).

This is not difficult because

E [�(T)H*(T)] (A.11)�

is the expectation of a lognormal distribution. We need only the mean and the variance of this log-
normal distribution. Observe that

2 * 2 *�rT�� T/2�� B (T ) (� �� /2)T�� B (T )* * * * *�(T) � e , S*(T) � S*(0)e . (A.12)

Therefore after some straightforward computations

E [�(T)H*(T)] � W (A.13)� 0

implies that
�* 2 2(1�
)rT�
X (T )�(
�
 )� /2T*H*(T) � W � e , (A.14)0

with 
 given by

1 �*
 � . (A.15)
� �*

Further, using (11) and(9) we find that H*(T) can also be expressed as
2 2 *((1�
)r�
� �
 � /2)T�
� B (T )* * *H*(T) � W � e . (A.16)0

On the other hand, using (11) and taking into account (8) we find that

2 2
 �
�*
 *X (T) � (1 � 
)r � 
� � T � 
� B*(T). (A.17)� �* *2

This ends the proof. �
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A.5 Proof of Equation (52)

PROOF

Define F*(x) � P(H*(T) 	 x). For x � W0(1 � 
)erT, then
b 211 
W e �0 *ln � � � T� � � �rT *c x � W (1 �
)e 21 0F*(x) � � .� �� �T*

For x � W0(1 � 
)erT, one has F*(x) � 1.
One can then calculate the inverse (F*)�1:

rTW (1 � 
)e if y � 10
�1(F*) ( y) � 2�b �1 rT1 *
W e exp c (� � T � c � �T� ( y) � (1 � 
)W e otherwise.
 � � �0 1 1 0* *2

Then G*(T) � (F*)�1 (T))), and formula (52) is straightforward to obtain. ��*(F (S�*S
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