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Outline of the talk

1 The Growth Optimal Portfolio and Issues with Traditional
Diversification Strategies

2 Characterization of optimal investment strategies for an
investor with law-invariant preferences and a fixed
investment horizon

3 Issues with these optimal strategies

4 Extension to the case when investors have state-dependent
constraints.
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Contributions

1 A better understanding of the link between Growth Optimal
Portfolio and optimal investment strategies

2 Understanding how lowest outcomes of optimal strategies
always happen in the worse states of the economy.

3 Develop innovative strategies to cope with this observation.

4 Implications in terms of assessing the risk and return of a
strategy and in terms of reducing systemic risk
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Part I:

Traditional

Diversification Strategies
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Growth Optimal Portfolio (GOP)

• The Growth Optimal Portfolio (GOP) maximizes expected
logarithmic utility from terminal wealth.

• It has the property that it almost surely accumulates more
wealth than any other strictly positive portfolios after a
sufficiently long time.

• Under general assumptions on the market, the GOP is a
diversified portfolio.

• Details in Platen (2006).
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For example, in the Black-Scholes model

• A Black-Scholes financial market (mainly for ease of
exposition)

• Risk-free asset {Bt = B0ert , t > 0}
• 

dS1
t

S1
t

= µ1dt + σ1dW 1
t

dS2
t

S2
t

= µ2dt + σ2dWt

, (1)

where W 1 and W are two correlated Brownian motions under
the physical probability measure P.

Wt = ρW 1
t +

√
1− ρ2W 2

t

where W 1 and W 2 are independent.
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Growth Optimal Portfolio (GOP)

In the 2-dimensional Black-Scholes setting,

• The payoff of a constant-mix strategy is

Sπt = Sπ0 exp(Xπ
t )

where X π
t is normal.

• The GOP is a constant-mix strategy with
Xπ
t =

(
µπ − 1

2σ
2
π

)
t + σπW π

t , that maximizes the expected
growth rate µπ − 1

2σ
2
π. It is

π? = Σ−1 · (µ− r1) . (2)

Denote by Sπ? = S? the GOP.
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Market Crisis

The growth optimal portfolio S? can also be interpreted as a
major market index. Hence it is intuitive to define a stressed
market (or crisis) at time T as an event where the market -
materialized through S? - drops below its Value-at-Risk at some
high confidence level. The corresponding states of the economy
verify

Crisis states = {S?T < qα} , (3)

where qα is such that P(S?T < qα) = 1− α and α is typically high
(e.g. α = 0.98).
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Srategy 1: GOP

We invest fully in the GOP.

In a crisis (GOP is low), our portfolio is low!
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Srategy 2: Buy-and-Hold

The buy-and-hold strategy is the simplest investment strategy. An
initial amount V0 is used to purchase w0 units of the bank account
and wi units of stock S i (i = 1, 2) such that

V0 = w0 + w1 S1
0 + w2 S2

0 ,

and no further action is undertaken.

Example with 1/3 invested in each asset (bank, S1 and S2) on next
slide.
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Strategy 3: Constant-Mix Strategy

• dynamic rebalancing to preserve the initial target allocation
• For an initial investment V0, VT is given by

VT = V0
SπT
Sπ0

,

where π is the vector of proportions.
• constant-mix portfolios given by π = απ? with α > 0 and

where π? is the optimal proportion for the GOP, are optimal
strategies for CRRA expected utility maximizers. Precisely,
CRRA investors with a constant relative risk aversion
coefficient η > 0 have utility

U(x) =

{
x1−η

1−η when η 6= 1

log(x) when η = 1,

and α = 1/η.

Example with 1/3 invested in each asset (bank, S1 and S2).
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I These three traditional diversification strategies do not offer
protection during a crisis.

I In a more general setting, optimal strategies share the same
problem...
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Part II:

Optimal portfolio selection

for law-invariant preferences
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Stochastic Discount Factor and Real-World Pricing:

The GOP can be used as numeraire to price under P{
Price of
XT at 0

}
= EQ [e−rTXT ] = EP [ξTXT ] = EP

[
XT

S?T

]
where S?0 = 1.
Optimal Portfolio Selection Problem

max
XT

U(XT )

subject to a given “cost of XT” (equal to initial wealth)
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Cost-efficient strategies (Dybvig (1988))

Consider an investor with fixed investment horizon and objective
function to optimize U(·).

• Law-invariant preferences

XT ∼ YT ⇒ U(XT ) = U(YT )

• Increasing preferences

XT ∼ F ,YT ∼ G ,∀x ,F (x) 6 G (x)⇒ U(XT ) > U(YT )

A strategy (or a payoff) is cost-efficient

if any other strategy that generates the same distribution under P
costs at least as much.

The optimal strategy for U must be cost-efficient.
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Optimal Portfolio and Cost-efficiency

Consider an investor with increasing law-invariant preferences
and a fixed horizon. Denote by XT the investor’s final wealth. The
optimal strategy solves a cost-efficiency problem

min
{XT | XT∼F}

E

[
XT

S?T

]

Reciprocally a cost-efficient strategy with a continuous
distribution F corresponds to the optimum of an expected utility
investor for

U(x) =

∫ x

0
G−1(1− F (y))dy

where G is the cdf of 1
S?T

.
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Sufficient Condition for Cost-efficiency

A random pair (X ,Y ) is comonotonic if

there exists a non-decreasing relationship between them.

Theorem (Sufficient condition for cost-efficiency)

Any random payoff XT with the property that (XT ,S
?
T ) is

comonotonic is cost-efficient.

This result holds in discrete and continuous markets.
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Idea of the proof

min
XT

E

[
XT

S?T

]
subject to

{
XT ∼ F

1
S?T
∼ G

Recall that

corr

(
XT ,

1

S?T

)
=
E
[
XT

1
S?T

]
− E[ 1

S?T
]E[XT ]

std( 1
S?T

) std(XT )
.

We can prove that when the distributions for both XT and 1
S?T

are

fixed, we have

(XT,S
?
T) is comonotonic⇒ corr

[
XT,

1

S?T

]
is minimal.
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Explicit Representation for Cost-efficiency

Theorem

Consider the following optimization problem:

PD(F ) := min
{XT | XT∼F}

E

[
XT

S?T

]
Assume S?T is continuously distributed, then the optimal
strategy is

X?T = F−1
(

FS?T
(S?T )

)
.

Note that X?T ∼ F and X?T is a.s. unique such that
PD(F ) = c(X?T )
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Black-Scholes Model

To be cost-efficient, the contract has to be a European
derivative written on S?T and non-decreasing w.r.t. S?T . In
this case,

X?T = F−1
(

FS?T
(S?T )

)
Corollary

Path-dependent derivatives are always inefficient in the
Black-Scholes framework.
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Part III:

Investment under

Worst-Case Scenarios
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Investment with State-Dependent Constraints

Problem considered so far

min
{XT | XT∼F}

E

[
XT

S?T

]
.

A payoff that solves this problem is cost-efficient.

New Problem

min
{VT | VT∼F , S}

E

[
VT

S?T

]
.

where S denotes a set of constraints. A payoff that solves this
problem is called a S−constrained cost-efficient payoff.
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Type of Constraints

We are able to find optimal strategies with final payoff VT

I with an additional probability constraint

P(S?T 6 s,VT 6 v) = β

I with a set of probability constraints

∀(s, v) ∈ S, P(S?T 6 s,VT 6 v) = Q(s, v)

where Q is an appropriate given function and S verifies some
properties.

I in particular, assuming that the final payoff of the strategy is
independent of S?T during a crisis (defined as S?T 6 qα),

∀s 6 qα, v ∈ R,P(S?T 6 s,VT 6 v) = P(S?T 6 s)P(VT 6 v)
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Independence in the Tail - Strategy 4: Path-dependent

Theorem

The cheapest path-dependent strategy with a cumulative
distribution F but such that it is independent of S?T when S?T 6 qα
can be constructed as

V ?
T =



F−1

(
FS?

T
(S?T )−α
1−α

)
when S?T > qα,

F−1

Φ


ln

 S?t

(S?T )
t/T

−(1− t
T

) ln(S?0 )

σ?

√
t− t2

T


 when S?T 6 qα,

(4)
where t ∈ (0,T ) can be chosen freely.

(No uniqueness and path-independence anymore).
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Independence in the Tail - Strategy 5: Path-independent

In a financial market that contains at least two assets that are
continuously distributed, the cheapest path-independent strategy
with a cumulative distribution F but such that it is independent
of S?T when S?T 6 qα can be constructed as

Z ?
T =

 F−1

(
FS?

T
(S?T )−α
1−α

)
when S?T > qα

F−1(Φ(A)) when S?T 6 qα

. (5)

where A is given as

A = Φ

 1
σ1

[
ln
(
S1
T

S1
0

)
−
(
µ1 −

σ2
1

2

)
T
]
− ρ?

σ?

[
ln
(
S?T
S?0

)
−
(
µ? − σ2

?
2

)
T
]

√
(1− ρ2

?)T

 ,

with ρ? =
π?1σ

2
1+σ1

∑n
i=2 π

?
i σiρ1i

σ1σ?
and π?i denotes the i−th element of

the growth optimal portfolio π?.
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Part IV:

Investment under

Worst-Case Scenarios

Some numerical examples
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Copulas and Sklar’s theorem

The joint cdf of a couple (S?T ,X ) can be decomposed into 3
elements

• The marginal cdf of S?T : H

• The marginal cdf of XT : F

• A copula C

such that
P(S?T 6 s,XT 6 x) = C (H(s),F (x))
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Other Types of Dependence

Independence in the tail:

∀s 6 qα, v ∈ R,P(S?T 6 s,VT 6 v) = P(S?T 6 s)P(VT 6 v)

This corresponds to the independence copula C (u, v) = uv

I We were also able to derive formulas for optimal strategies
that generate a Gaussian distribution in the tail with a
correlation coefficient of -0.5.

I Similarly for Clayton or Frank dependence.
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Optimal Investment with a Clayton Tail Dependence

Let Q? be the Clayton copula Q?(u, v) = (u−a + v−a − 1)
−1/a

.
Assume that the payoff VT of the strategy has a cdf F and has to
satisfy the following dependency when the market is in a crisis

∀s ∈ [0, qα] , y ∈ R, P(S?T 6 s, VT 6 y) = F (y)−Q?(1−FS?T
(s),F (y))

Then the cheapest strategy V ?
T with cdf F that verifies this

Clayton dependence in the tail is

V ?
T =


F−1

([
(FS?T

(S?T )− α)−a − (1− α)−a + 1
]−1/a

)
if S?T > qα

F−1
(

g
(

1− FS?T
(S?T ), jFS?

T
(S?T )(FZT

(ZT ))
))

if S?T 6 qα,

where ZT is such that (S?T ,ZT ) is continuously distributed (with
copula J) and where g is known explicitly:

g(u, v) =
[
u−a

(
v−a/(1+a) − 1

)
+ 1
]−1/a

.
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Some numerical results

We define two events related to the market, i.e. the market crisis
C = {S?T < qα} and a decrease in the market D =

{
S?T < S?0 erT

}
.

We further define two events for the portfolio value by
A =

{
VT < V0erT

}
and B =

{
VT < 75%V0erT

}
T Cost Sharpe P(A|C ) P(A|D) P(B|C )

GOP 5 100 0.266 1.00 1.00 1.00

Buy-and-Hold 5 100 0.239 0.9998 0.965 0.99

Independence 5 101.67 0.214 0.46 0.94 0.13

Gaussian 5 103.40 0.159 0.12 0.90 0.01

Clayton 5 102.35 0.193 0.24 0.91 0.02
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Conclusions

• Cost-efficiency: a preference-free framework for ranking
different investment strategies.

• Characterization of optimal portfolio strategies for
investors with law invariant preferences and a fixed horizon.

I Lowest outcomes in worst states of the economy

• Optimal investment choice under state-dependent
constraints.

• not always non-decreasing with the GOP S?
T .

• not anymore unique
• could be path-dependent.

I Trade-off between losing “utility” and gaining from better fit
of the investor’s preferences.
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More Implications

I The new strategies do not incur their biggest losses in the
worst states in the economy.

I can be used to reduce systemic risk.
• the idea of assessing risk and performance of a portfolio not

only by looking at its final distribution but also by looking at
its interaction with the economic conditions is indeed related
to the increasing concern to evaluate systemic risk.

• Acharya (2009) explains that regulators should “be regulating
each bank as a function of both its joint (correlated) risk with
other banks as well as its individual (bank-specific) risk”.

• An insight of this work is that if all institutional investors
implement strategies that are resilient against crisis regimes, as
we propose, then systemic risk can be diminished.

Do not hesitate to contact me to get updated working papers!
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Part V:

Proofs with Copulas

Optimal Portfolio under Tail Dependence
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Copulas and Sklar’s theorem

The joint cdf of a couple (ξT ,X ) can be decomposed into 3
elements

• The marginal cdf of ξT : G

• The marginal cdf of XT : F

• A copula C

such that
P(ξT 6 ξ,XT 6 x) = C (G (ξ),F (x))
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Where do copulas appear?

in the derivation of “cost-efficient” strategies...

Solving the cost-efficiency problem amounts to finding bounds on
copulas!

min
XT

E [ξTXT ]

subject to

{
XT ∼ F
ξT ∼ G
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Proof of the cost-efficient payoff

min
XT

E [ξTXT ]

subject to

{
XT ∼ F
ξT ∼ G

The distribution G is known and depends on the financial market.
Let C denote a copula for (ξT ,X ).

E[ξTX ] =

∫ ∫
(1− G (ξ)− F (x) + C (G (ξ),F (x)))dxdξ, (6)

The lower bound for E[ξTX ] is derived from the lower bound on C

max(u + v − 1, 0) 6 C (u, v)

(where max(u + v − 1, 0) corresponds to the anti-monotonic
copula). E [ξTF−1(1− G (ξT ))] 6 E [ξTXT ]

then X?T = F−1 (1− G (ξT )) has the minimum price for the
cdf F .
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Sufficient condition for the existence

Theorem

Let t ∈ (0,T ). If there exists a copula L satisfying S such that
L 6 C (pointwise) for all other copulas C satisfying S then the
payoff Y ?

T given by

Y ?
T = F−1(f (ξT , ξt))

is a S-constrained cost-efficient payoff. Here f (ξT , ξt) is given by

f (ξT , ξt) =
(
`G(ξT )

)−1 [
jG(ξT )(G (ξt))

]
,

where the functions ju(v) and `u(v) are defined as the first partial
derivative for (u, v)→ J(u, v) and (u, v)→ L(u, v) respectively
and where J denotes the copula for the random pair (ξT , ξt).

If (U,V ) has a copula L then `u(v) = P(V 6 v |U = u).
When S = ∅, f (ξt , ξT ) = F−1 (1− G (ξT )).
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Existence of the optimum ⇔ Existence of minimum copula

Theorem (Sufficient condition for existence of a minimal copula L)

Let S be a rectangle [u1, u2]× [v1, v2] ⊆ [0, 1]2. Then a minimal
copula L(u, v) satisfying S exists and is given by

L(u, v) = max {0, u + v − 1, K (u, v)} .

where K (u, v) = max(a,b)∈ S {Q(a, b)− (a− u)+ − (b − v)+}.

Proof in a note written with Xiao Jiang and Steven Vanduffel
extending Tankov’s result.

Consequently the existence of a S−constrained cost-efficient
payoff is guaranteed when S is a rectangle. More generally it
also holds when S ⊆ [0, 1]2 satisfies a “monotonicity
property” of the upper and lower “boundaries” and

∀ (u, v0) , (u, v1) ∈ S,
(

u,
v0 + v1

2

)
∈ S. (7)
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