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Introduction Preferences Continuous Distribution Other Distributions Applications Risk Aversion Conclusions

Contributions

1 In any behavioral setting respecting First-order Stochastic
Dominance, investors only care about the distribution of final
wealth (law-invariant preferences).

2 In any such setting, the optimal portfolio is also the optimum
for a risk-averse Expected Utility maximizer.

3 Given a distribution F of terminal wealth, we construct a
utility function such that the optimal solution to

max
XT | budget=ω0

E [U(XT )]

has the cdf F .
4 Use this utility to infer risk aversion.
5 Decreasing Absolute Risk Aversion (DARA) can be directly

related to properties of the distribution of final wealth and of
the financial market in which the agent invests.
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FSD implies Law-invariance

Consider an investor with fixed horizon and objective V (·).

Theorem

Preferences V (·) are non-decreasing and law-invariant if and only if
V (·) satisfies first-order stochastic dominance.

• Law-invariant preferences

XT ∼ YT ⇒ V (XT ) = V (YT )

• Increasing preferences

XT > YTa.s.⇒ V (XT ) > V (YT )

• first-order stochastic dominance (FSD)

XT ∼ FX ,YT ∼ FY , ∀x ,FX (x) 6 FY (x)⇒ V (XT ) > V (YT )
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Main Assumptions

• Given a portfolio with final payoff XT (consumption only at
time T ).

• P (“physical measure”). The initial value of XT is given by

c(XT) =EP[ξTXT].

where ξT is called the pricing kernel.

• All market participants agree on ξT and ξT is continuously
distributed.

• Preferences satisfy FSD.

• Another approach: Let Q be a “risk-neutral measure”, then

ξT = e−rT
(

dQ

dP

)
T

, c(XT ) = EQ [e−rTXT ].
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Optimal Portfolio and Cost-efficiency

Definition:(Dybvig (1988), Bernard et al. (2011))

A payoff is cost-efficient if any other payoff that generates the
same distribution under P costs at least as much.

Let XT with cdf F . XT is cost-efficient if it solves

min
{XT | XT∼F}

E[ξTXT ] (1)

The unique optimal solution to (1) is X?T = F−1 (1− FξT (ξT )) .
Consider an investor with preferences respecting FSD and final
wealth XT at a fixed horizon.

Theorem 1:

Optimal payoffs must be cost-efficient.
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Optimal Portfolio and Cost-efficiency

Theorem 2:

An optimal payoff XT with a continuous increasing distribution F
also corresponds to the optimum of an expected utility investor for

U(x) =

∫ x

0
F−1
ξT

(1− F (y))dy

where FξT is the cdf of ξT and budget= E [ξTF−1(1− FξT (ξT ))].
The utility function U is C 1, strictly concave and increasing.

I When the optimal portfolio in a behavioral setting respecting
FSD is continuously distributed, then it can be obtained by
maximum expected (concave) utility.

I All distributions can be approximated by continuous
distributions. Therefore all investors appear to be
approximately risk averse...
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Generalization

We can show that all distributions can be the optimum of an
expected utility optimization with a “generalized concave utility”.

Definition: Generalized concave utility function

A generalized concave utility function Ũ : R→ R is defined as

Ũ(x) :=


U(x) for x ∈ (a, b),
−∞ for x < a,
U(a+) for x = a,
U(b−) for x > b,

where U(x) is concave and strictly increasing and (a, b) ⊂ R.
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General Distribution

Let F be

• a continuous distribution on (a, b)

• a discrete distribution on (m,M)

• a mixed distribution with F = pF d + (1− p)F c , 0 < p < 1
and F d (resp. F c) is a discrete (resp. continuous)
distribution.

Let X ?
T be the cost-efficient payoff for this cdf F . Assume its cost,

ω0, is finite. Then X ?
T is also an optimal solution to the following

expected utility maximization problem

max
XT | E [ξTXT ]=ω0

E
[
Ũ(XT )

]
where Ũ : R→ R is a generalized utility function given explicitly in
the paper.
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Illustration in the Black-Scholes model.

Under the physical measure P,

dSt

St
= µdt + σdW P

t ,
dBt

Bt
= rdt

Then

ξT = e−rT
(

dQ

dP

)
T

= a

(
ST

S0

)−b
where a = e

θ
σ

(µ−σ2

2
)t−(r+ θ2

2
)t , θ = µ−r

σ and b = µ−r
σ2 .
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Utility & Distribution

• Power utility (CRRA) & the LogNormal distribution:
LN (A,B2) corresponds to a CRRA utility function with

relative risk aversion θ
√
T

B :

U(x) =

 a x1− θ
√

T
B

1− θ
√
T

B

θ
√
T

B 6= 1,

a log(x) θ
√
T

B = 1,

(2)

where a = exp(Aθ
√
T

B − rT − θ2T
2 ).

• Exponential utility & the Normal Distribution N(, )
corresponds to the exponential utility U(x) = − exp(−γx),
where γ is the constant absolute risk aversion parameter.
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Explaining the Demand for Capital Guarantee Products

YT = max(G ,ST )

where ST is the stock price and G the guarantee.
ST ∼ LN (MT ,Σ

2
T ).

The utility function is then given by

Ũ(x) =


−∞ x < G ,

a x
1− θ
√
T

ΣT −G
1− θ
√
T

ΣT

1− θ
√
T

ΣT

x > G , θ
√
T

ΣT
6= 1,

a log( x
G ) x > G , θ

√
T

ΣT
= 1,

(3)

with a = exp(MT θ
√
T

ΣT
− rT − θ2T

2 ).

• The mass point is explained by a utility which is infinitely
negative for any level of wealth below the guaranteed level.

• The CRRA utility above this guaranteed level ensures the
optimality of a Lognormal distribution above the guarantee.
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Yaari’s Dual Theory of Choice Model

Final wealth XT . Objective function to maximize

Hw [XT ] =

∫ ∞
0

w (1− F (x))dx ,

where the (distortion) function w : [0, 1]→ [0, 1] is non-decreasing
with w(0) = 0 and w(1) = 1. Then, the optimal payoff is

X ?
T = b1ξT6c

where b > 0 is given to fulfill the budget constraint.
We find that the utility function is given by

U(x) =


−∞ x < 0
f (x − c) 0 6 x 6 b
f (b − c) x > b

where f > 0 is constant.
Carole Bernard All Investors are Risk-averse Expected Utility Maximizers 12
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Inferring preferences and utility

I more natural for an investor to describe her target distribution
than her utility (Goldstein, Johnson and Sharpe (2008) discuss
how to estimate the distribution at retirement using a
questionnaire).

I From the investment choice, get the distribution and find the
corresponding utility U. ⇒ Inferring preferences from the
target final distribution

I ⇒ Inferring risk-aversion. The Arrow-Pratt measure for
absolute risk aversion can be computed from a twice

differentiable utility function U as A(x) = −U′′(x)
U′(x) .

I Always possible to approximate by a twice differentiable utility
function...
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Risk Aversion Coefficient

Theorem (Arrow-Pratt Coefficient)

Consider an investor who wants a cdf F (with density f ). The
Arrow-Pratt coefficient for absolute risk aversion is for x = F−1(p),

A(x) =
f (F−1(p))

g(G−1(p))
,

where g and G are resp. the density and cdf of − log(ξT ).

Theorem (Distributional characterization of DARA)

DARA iff x 7→ F−1(G (x)) is strictly convex.

In the special case of Black-Scholes: x 7→ F−1(Φ(x)) is strictly
convex, where φ(·) and Φ(·) are the density and cdf of N(0,1).
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Some comments

I In the Black Scholes setting, DARA if and only if the target
distribution F is fatter than a normal one.

I In a general market setting, DARA if and only if the target
distribution F is fatter than the cdf of − log(ξT ).

I Sufficient property for DARA:
• logconvexity of 1− F
• decreasing hazard function (h(x) := f (x)

1−F (x) )

I Many cdf seem to be DARA even when they do not have
decreasing hazard rate function. ex: Gamma, LogNormal,
Gumbel distribution.
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Conclusions & Future Work

I Inferring preferences and risk-aversion from the choice of
distribution of terminal wealth.

I Understanding the interaction between changes in the
financial market, wealth level and utility on optimal terminal
consumption for an agent with given preferences.

I FSD or law-invariant behavioral settings cannot explain all
decisions. One needs to look at state-dependent preferences
to explain investment decisions such as

• Buying protection...
• Investing in highly path-dependent derivatives...

Do not hesitate to contact me to get updated working papers!
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