Dynamic Preferences for Popular Investment Strategies in Pension Funds

Carole Bernard and Minsuk Kwak

Waterloo Research Institute in Insurance, Securities & Quantitative Finance

- B- 6

Paris, June 2013

Outline

- Motivation & Contributions
- Oynamic preferences: "Forward utility"
- Oynamic Preferences for CPPI
- Oynamic Preferences for Life-cycle Funds
- Conclusions

Motivation

Utility function

- The way we measure satisfaction from consumption or wealth
- *Increasing* function : economic agent prefers a higher level of consumption or wealth to lower one.
- Concave function : marginal utility is decreasing

Classical optimal portfolio choice problem

Choose a utility function \Rightarrow Find the optimal investment strategy

Opposite way

Given an investment strategy \Rightarrow Infer the utility for it to be optimal?

< ロ > < 同 > < 回 > < 回 >

Contributions

- Infer the utility for a dynamic strategy:
 - no specific horizon
 - the type of strategy is associated to a class of utility.
 - the parameters of the strategy are related to the risk aversion level.
- Work specifically on 2 examples CPPI strategies and Life Cycle Funds
- A standard **CPPI** strategy is optimal in a Black-Scholes model for HARA utility but it needs to have a dynamically updated multiple to be optimal for a HARA utility in a more general market.
- Some type of life-cycle funds can be optimal for the SAHARA utility (optimality of a decreasing proportion in risky asset over time). However, a constant decrease over time may not be optimal.

Strategy \Rightarrow Utility : Literature Review

Similar perspective, but different approach

- Dybvig and Rogers (1997) : "Recovery of Preferences from Observed Wealth in a Single Realization"
- Cuoco and Zapatero (2000) : "On the Recoverability of Preferences and Beliefs"
- Cox, Hobson, and Obloj. (2012) : "Utility Theory Front to Back -Inferring Utility from Agents' Choices"
- Bernard, Chen, Vanduffel (2013): "All Investors are Risk Averse Expected Utility Maximizers"

Forward investment performance or Forward utility

- Musiela and Zariphopoulou (2009, 2010, 2011)
- Berrier, Rogers, and Tehranchi. (2010)

Outline

Forward Utility

- Define "Forward Utility"
- Illustrate Key Idea to find the forward utility

CPPI Strategy

- Introduce CPPI strategy
- Find the corresponding "Forward Utility" (which is a HARA utility at fixed time) corresponds to CPPI strategy

Life-Cycle Funds

- Introduce Life-Cycle Funds
- Introduce SAHARA utility
- Find the corresponding "Forward Utility" (which is a SAHARA utility at fixed time) and corresponding investment strategy which is a kind of Life-Cycle Funds

Financial Market & Portfolio Value Process

One-dimensional market with two assets: a risky asset S_t and a risk-free bond B_t

$$dS_t = S_t(\mu_t dt + \sigma_t dW_t), S_0 > 0, \quad dB_t = r_t B_t dt, B_0 = 1,$$

*r*_t, μ_t and σ_t may be stochastic but are adapted to the filtration F_t
Market price of risk (or instantaneous Sharpe ratio)

$$\lambda_t \triangleq \frac{\mu_t - \mathbf{r}_t}{\sigma_t}$$

Risk-free bond B_t is used as numéraire. Then, X^π_t : present value(value at time 0) of the portfolio at time t, with strategy π

$$X_t^{\pi} = \pi_t^0 + \pi_t$$

- π_t^0 amount invested in the risk-free asset B_t
- π_t amount invested in the risky asset S_t .
- Since B_t is used as numéraire,

$$d\pi_t^0 = 0, \quad dX_t^{\pi} = d\pi_t = \pi_t [(\mu_t - r_t)dt + \sigma_t dW_t] = \sigma_t \pi_t (\lambda_t dt + dW_t).$$

Definition of Forward Utility

Definition 2.1 (Forward utility)

An *F_t*-adapted process *U_t(x)* is a "Forward utility" if :
x → *U_t(x)* is strictly concave and increasing
for each π ∈ A (i.e. for each attainable X^π_s), and t ≥ s,

 $\mathbb{E}[U_t(X_t^{\pi})|\mathcal{F}_s] \leq U_s(X_s^{\pi}),$

3) there exists $\pi^* \in \mathcal{A}$, for which for all $t \geq s$,

 $\mathbb{E}[U_t(X_t^{\pi^*})|\mathcal{F}_s] = U_s(X_s^{\pi^*}),$

for $t \ge 0$ and $x \in \mathbb{D}$ where \mathbb{D} is an interval of \mathbb{R}

< fi ▶ < li ▶

Explanation for the Definition of Forward Utility

- For a fixed $t, x \rightarrow U_t(x)$ is a concave, increasing function.
- For some T > 0, let us define v(x, t) as

$$\mathcal{V}(x,t) \triangleq \sup_{\pi \in \mathcal{A}} \mathbb{E}\left[U_T(X_T^{\pi}) | \mathcal{F}_t, X_t^{\pi} = x \right]$$
 (1)

where $U_t(x)$ is a forward utility defined in the previous page.

Let π ∈ A and π^{*} is the optimum. Then, by dynamic programming principle,

 $(v(X_s^{\pi}, s))_s$: Supermartingale for each π

 $(v(X_s^{\pi^*}, s))_s$: Martingale for π^*

Under some conditions, we can prove that

$$v(x,t) = U_t(x), \ 0 \le t \le T.$$

 \Rightarrow This is why the forward utility is defined as in the previous page!

Musiela and Zariphopoulou (2009, 2010, 2011)

- Musiela and Zariphopoulou (2009, 2010, 2011) develop several examples of correspondence between a forward utility and a dynamic investment strategy.
- They find sufficient conditions for a forward utility to exist and explain the optimality of a dynamic strategy.
- This forward utility is formulated as

$$U_t(x) = u(x, A_t) \tag{2}$$

• • • • • • • • • • • • •

where $A_t \triangleq \int_0^t \lambda_s^2 ds, t \ge 0$.

 \Rightarrow We show how their work can be applied to understand CPPI strategies and life-cycle funds.

Key Idea to find forward utilities

For each strategy $\pi \in A$, assume that $U_t(X_t^{\pi}) = u(X_t^{\pi}, A_t)$. By applying Itô's formula, we have

$$dU_t(X_t^{\pi}) = u_x(X_t^{\pi}, A_t)\sigma_t\pi_t dW_t$$

$$+ \lambda_t^2 \left[u_t(X_t^{\pi}, A_t) + u_x(X_t^{\pi}, A_t)\alpha_t + \frac{1}{2}u_{xx}(X_t^{\pi}, A_t)\alpha_t^2 \right] dt,$$
(3)

where $\alpha_t \triangleq \sigma_t \pi_t / \lambda_t$.

Goal

For each strategy $\pi \in A$, non-positive drift of $U_t(X_t^{\pi})$

$$u_t(X_t^{\pi}, A_t) + u_x(X_t^{\pi}, A_t)\alpha_t + \frac{1}{2}u_{xx}(X_t^{\pi}, A_t)\alpha_t^2 \leq 0$$

For optimal strategy π^* , zero drift of $U_t(X_t^{\pi^*})$

$$u_t(X_t^{\pi^*}, A_t) + u_x(X_t^{\pi^*}, A_t)\alpha_t + \frac{1}{2}u_{xx}(X_t^{\pi^*}, A_t)\alpha_t^2 = 0$$

CPPI Strategy (1)

- Constant Proportion Portfolio Insurance
- Introduced by Black and Perold (1992)
- Key feature : at any time...

Value of portfolio ≥ Predefined floor level

- Good way to hedge long-term guarantees when
 - the maturity date is not known in advance
 - regulators require the guarantee to be met at all times
- Popular in the insurance industry to manage pension funds and variable annuities

.

CPPI Strategy (2)

• *G_t* > 0: predefined floor level. Assume that

$$dG_t = G_t r_t dt, \ G_0 = G.$$

 $\Rightarrow G_t = GB_t.$

- V_t: portfolio value at time t
- $C_t = V_t G_t$: cushion
- Define $X_t = V_t/B_t$, the present value of V_t , then

$$\frac{C_t}{B_t} = X_t - G.$$

Maintain an exposure to the risky asset S_t proportional to the cushion. (*m* : multiple)

$$\pi_t = m \frac{C_t}{B_t} = m(X_t - G) \tag{4}$$

The amount of risk-free asset is therefore at all times

$$\pi_t^0 = X_t - \pi_t$$

Adapted Random Multiple

 To ensure that the CPPI strategy is optimal for an expected utility maximizer at any time horizon in the general market (stochastic parameters), we consider a slightly generalized CPPI strategy with random multiple

$$m_t = \frac{\lambda_t / \lambda_0}{\sigma_t / \sigma_0} m, \ \pi_t = m_t (X_t - G)$$
(5)

At any time t, m_t is adapted to \mathcal{F}_t , the information available.

• In the case of a Black-Scholes model (constant parameters), $\pi_t = m_t(X_t - G)$ corresponds to a standard CPPI strategy with fixed multiple *m*

$$\pi_t = m(X_t - G)$$

because both λ_t and σ_t are constant.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition 2.1 (General Case)

The dynamic CPPI investment strategy consisting of

$$\pi_t^* = \frac{\lambda_t / \lambda_0}{\sigma_t / \sigma_0} m(X_t^* - G)$$
(6)

invested in the risky asset (i.e. a CPPI strategy with an adapted multiple $\frac{\lambda_t/\lambda_0}{\sigma_t/\sigma_0}m$) corresponds to the optimum for the forward utility $U_t(x) = u(x, A_t)$ where u(x, s) is given for $x \in (G, \infty)$ and $s \ge 0$ by

$$u(x,s) = \begin{cases} \frac{\gamma}{\gamma-1}(x-G)^{\frac{\gamma-1}{\gamma}}e^{-\frac{\gamma-1}{2}s}, & \gamma \in (0,1) \cup (1,\infty), \\ \ln(x-G) - \frac{s}{2}, & \gamma = 1. \end{cases}$$
(7)

where $\gamma = \sigma_0 m / \lambda_0$ and $A_t \triangleq \int_0^t \lambda_s^2 ds$.

 \Rightarrow The forward utility $u(\cdot, s)$ belongs to the HARA utility class at all s.

Proposition 2.2

Reciprocally, given any time T, consider the following portfolio optimization problem to maximize the utility of wealth at time T

 $\max_{\pi\in\mathcal{A}}\mathbb{E}\left[u(X_{T},A_{T})\right],$

where $A_T = \int_0^T \lambda_s^2 ds$ and $u(\cdot, \cdot)$ is given by (7) and defined over $(G, \infty) \times [0, \infty)$. Then the optimal allocation is a dynamic CPPI strategy

$$\pi_t^* = \frac{\lambda_t/\lambda_0}{\sigma_t/\sigma_0} m(X_t^* - G).$$

This proposition holds for any given time *T* with $u(X_T, A_T)$.

⇒ Forward utility: Dynamically consistent utility functions!

We have to rebalance the investment strategy depending on λ_t and σ_t in stochastic environment. (Dynamically changing investment opportunity)

Bernard Carole (University of Waterloo)

Corollary 2.1 (Black-Scholes Case)

Assume that μ , r and σ are constant and $\lambda \triangleq (\mu - r)/\sigma$. Define $\gamma = \sigma m/\lambda$. Then, we have the following results.

With the CPPI strategy π^{*}_t = m(X^{*}_t − G), the corresponding forward utility is U_t(x) = u(x, λ²t) with u(·, ·) is given by

$$u(x,s) = \begin{cases} \frac{\gamma}{\gamma-1}(x-G)^{\frac{\gamma-1}{\gamma}}e^{-\frac{\gamma-1}{2}s}, & \gamma \in (0,1) \cup (1,\infty), \\ \ln(x-G) - \frac{s}{2}, & \gamma = 1. \end{cases}$$
(8)

 Given any time T, the solution to the following portfolio optimization problem

$$\max_{\pi\in\mathcal{A}}\mathbb{E}[u(X_T,\lambda^2 T)],$$

with $u(\cdot, \cdot)$ given by (8) is a CPPI strategy $\pi_t^* = m(X_t^* - G)$ where the multiple is $m = \frac{\lambda \gamma}{\sigma}$.

Life-Cycle Funds

Key feature of "Life-Cycle Funds"

Investment in risky asset is a decreasing function of time

What we do

- Present the Symmetric Asymptotic Hyperbolic Absolute Risk Aversion (SAHARA) class of utility functions introduced by Chen, Pelsser, and Vellekoop (2011)
- Give the corresponding forward utility and optimal strategy.
- Show that this optimal strategy displays the age-based investing feature of life-cycle funds which means that the optimal investment in risky asset is a decreasing function of time.

< ロ > < 同 > < 回 > < 回 > < 回 > <

SAHARA Utility Function

 A SAHARA utility function is given by U(x), x ∈ ℝ, whose absolute risk aversion γ_A(x) = −U_{xx}(x)/U_x(x) satisfies

$$\gamma_{\mathcal{A}}(x) = \frac{1}{\sqrt{a^2(x-d)^2 + c^2}},$$
 (9)

with a > 0, c > 0 and $d \in \mathbb{R}$. When d = 0, U(x) is up to a linear transformation, given as follows.

 For the SAHARA utility: agents may become less risk-averse for very low values of wealth.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Proposition 2.3 (General Case)

The following allocation to risky assets

$$\pi_t^* = \frac{\lambda_t}{\sigma_t} \sqrt{\boldsymbol{a}^2 (\boldsymbol{X}_t^*)^2 + \boldsymbol{b}^2 \boldsymbol{e}^{-\boldsymbol{a}^2 \boldsymbol{A}_t}},$$

(where a > 0, b > 0) is optimal for the forward utility

$$U_t(x) = u(x, A_t)$$

where $u(x, \cdot)$ is a SAHARA utility with time varying parameters, where $A_t = \int_0^t \lambda_s^2 ds$.

 π_t^* is also the optimal solution to

$$\max_{\pi\in\mathcal{A}}\mathbb{E}\left[u(X_{T},A_{T})\right],$$

where *u* is as in the above proposition.

⇒ Forward utility: Dynamically consistent utility functions!

Corollary 2.2 (Black-Scholes Case)

Assume that μ , r, and σ are constant. The following investment strategy

$$\pi_t^* = \frac{\lambda}{\sigma} \sqrt{\boldsymbol{a}^2 (\boldsymbol{X}_t^*)^2 + \boldsymbol{b}^2 \boldsymbol{e}^{-\boldsymbol{a}^2 \lambda^2 t}},$$

in the risky asset is optimal for the forward utility $U_t(x) = u(x, \lambda^2 t)$ where $u(x, \cdot)$ is a SAHARA utility as before. Reciprocally, given any time T, π_t^* also solves

$$\max_{\pi \in \mathcal{A}} \mathbb{E}\left[u(X_T, \lambda^2 T)\right].$$

-∢ ≣ ▶

SAHARA Utility and Life-Cycle Funds

• Local (absolute) risk aversion function, $\gamma(x, s) \triangleq -u_{xx}(x, s)/u_x(x, s)$, in the Black-Scholes model, for the SAHARA utility

$$\gamma(x,s) = \frac{1}{\sqrt{a^2 x^2 + b^2 e^{-a^2 s}}}.$$
 (10)

- Local risk aversion function (10) is an increasing function of *s*.
- This means that, if there is an economic agent with a SAHARA utility function, her optimal investment strategy becomes more conservative as time goes.
- As a consequence, the optimal allocation to the risky asset * $\sqrt{a^2(Y^*)^2 + b^2 - a^2)^2 t}$ is a decreasing function of time

 $\pi_t^* = \frac{\lambda}{\sigma} \sqrt{a^2 (X_t^*)^2 + b^2 e^{-a^2 \lambda^2 t}}$ is a decreasing function of time.

 \Rightarrow This is a kind of life-cycle funds!

Stochastic Environment : Rebalancing is Needed

• The optimal strategy in the general case

$$\pi_t^* = rac{\lambda_t}{\sigma_t} \sqrt{a^2 (X_t^*)^2 + b^2 e^{-a^2 A_t}}$$

shares similar features (decreasing in time), but we have to rebalance the investment taking into account λ_t and σ_t because the market is stochastic.

- This is consistent with Viceira (2007) who suggested that the market conditions should be involved in determining the asset allocation path of life-cycle funds.
- The standard life-cycle funds, consisting of a linear decrease of the percentage invested in risky asset does not appear optimal.
- The way to decrease the allocation over time, depends on changes in market conditions and risk aversion.

< ロ > < 同 > < 三 > < 三 > -

Conclusion and Future Research Direction

- We studied two popular dynamic investment strategies in the pension funds industry: "CPPI Strategy" and "Life-Cycle Funds".
- We can conclude that HARA and SAHARA utility functions may play a key role in explaining fund manager's decisions or in modeling optimal decision making.
- Future research directions include proving the existence and giving an explicit construction of the forward utility for more general investment strategies

Thank you for your attention!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Bernard, C., Chen, J.S., and Vanduffel, S., 2013. "All investors are risk-averse expected utility maximizers", working paper.
- Berrier, F.P., Rogers, L.C.G. and Tehranchi, M.R., 2010. A Characterization of Forward Utility Functions. working paper.
- Black, F., Perold, A., 1992. Theory of constant proportion portfolio insurance. Journal of Economic Dynamics and Control 16, 403–426.
- Chen, A., Pelsser, A., Vellekoop, M., 2011. Modeling non-monotone risk aversion using SAHARA utility functions. Journal of Economic Theory 146, 2075–2092.
- Cox, A.M.G, Hobson, D., Obloj, J., 2012. Utility Theory Front to Back Inferring Utility from Agents' Choices. working paper.
- Cuoco, D., Zapatero, F., 2000. On the Recoverability of Preferences and Beliefs. Review of Financial Studies 13, 417–431.
- Dybvig, P.H., Rogers, L.C.G., 1997. Recovery of Preferences from Observed Wealth in a Single Realization. Review of Financial Studies 10, 151–174.
- Huang, H., Milevsky, M.A., 2008. Portfolio Choice and Mortality-Contingent Claims: The General HARA Case. Journal of Banking and Finance 32, 2444–2452.
- Huang, H., Milevsky, M.A., Wang, J., 2008. Portfolio Choice and Life Insurance: The CRRA Case. Journal of Risk and Insurance 75, 847–872.
- Karatzas, I., Lehoczky, J.P., Sethi, S.P., Shreve, S.E., 1986. Explicit Solution of a General Consumption Investment Problem. Mathematics of Operations Research 11, 261–294.
- Kwak, M., Shin, Y.H., Choi, U.J., 2011. Optimal Investment and Consumption Decision of a Family with Life Insurance. Insurance: Mathematics and Economics 48, 176–188.
- Merton, R.C., 1969. Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case. Review of Economics and Statistics 51, 247–257.

Bernard Carole (University of Waterloo)

- Merton, R.C., 1971. Optimum Consumption and Portfolio Rules in a Continuous-Time Model. Journal of Economic Theory 3, 373–413.
- Merton, R.C., 1992. The Continuous-Time Finance. Wiley-Blackwell.
- Miao, J., Wang, N., 2007. Investment, Consumption, and Hedging under Incomplete Markets. Journal of Financial Economics 86, 608–642.
- Musiela, M., Zariphopoulou, T., 2009. Portfolio Choice under Dynamics Investment Performance Criteria. Quantitative Finance 9, 161–170.
- Musiela, M., Zariphopoulou, T., 2010. Portfolio Choice under Space-Time Monotone Performance Criteria. SIAM Journal on Financial Mathematics 1, 326–365.
- Musiela, M., Zariphopoulou, T., 2011. Initial Investment Choice Optimal Future Allocation under Time-Monotone Performance Criteria. International Journal of Theoretical and Applied Finance 14, 61–81.
- Pirvu, T.A., Zhang, H., 2012. Optimal Investment, Consumption and Life Insurance under Mean-Reverting Returns: The Complete Market Solution. Insurance: Mathematics and Economics 51, 303–309.
- Pliska, S.R., Ye, J., 2007. Optimal Life Insurance Purchase and Consumption/Investment under Uncertain Lifetime. Journal of Banking and Finance 31, 1307–1319.
- Richard, S., 1975. Optimal Consumption, Portfolio and Life Insurance Rules for an Uncertain Lived Individual in a Continuous Time Model. Journal of Financial Economics 2, 187–203.
- Sethi, S.P., Taksar, M., 1988. A Note on Merton's "Optimum Consumption and Portfolio Rules in a Continuous-Time Model". Journal of Economic Theory 46, 395–401.
- Viceira, L.M., 2007. Life-Cyecle Funds. Working paper.
- Yaari, M.E., 1965. Uncertain Lifetime, Life Insurance and the Theory of the Consumer. Review of Economic Studies 32, 137–150.