Path-dependent Inefficient Strategies and How to Make Them Efficient

Frankfurt MathFinance Conference - March 2010

Carole Bernard (University of Waterloo) & Phelim Boyle (Wilfrid Laurier University)

Cost-Efficiency	Main result	Example	Preferences	Limits
	00000	00000	00	00

Motivation / Context

- Starting point: work on popular US retail investment products. How to explain the demand for complex path-dependent contracts?
- ▶ Met with Phil Dybvig at the NFA in Sept. 2008.
- Path-dependent contracts are not "efficient" (JoB 1988, "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market" in RFS 1988).

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

Motivation / Context

- Starting point: work on popular US retail investment products. How to explain the demand for complex path-dependent contracts?
- ▶ Met with Phil Dybvig at the NFA in Sept. 2008.
- Path-dependent contracts are not "efficient" (JoB 1988, "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market" in RFS 1988).

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

Motivation / Context

- Starting point: work on popular US retail investment products. How to explain the demand for complex path-dependent contracts?
- ▶ Met with Phil Dybvig at the NFA in Sept. 2008.
- Path-dependent contracts are not "efficient" (JoB 1988, "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market" in RFS 1988).

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

What is cost-efficiency?

- Path-dependent strategies/payoffs are not cost-efficient.
- Explicit construction of efficient strategies.
- Investors (with a fixed horizon and law-invariant preferences) should prefer to invest in path-independent payoffs: path-dependent exotic derivatives are often not optimal!
- Examples: the put option and the geometric Asian option.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

- What is cost-efficiency?
- Path-dependent strategies/payoffs are not cost-efficient.
- Explicit construction of efficient strategies.
- Investors (with a fixed horizon and law-invariant preferences) should prefer to invest in path-independent payoffs: path-dependent exotic derivatives are often not optimal!
- Examples: the put option and the geometric Asian option.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

- What is cost-efficiency?
- Path-dependent strategies/payoffs are not cost-efficient.
- Explicit construction of efficient strategies.
- Investors (with a fixed horizon and law-invariant preferences) should prefer to invest in path-independent payoffs: path-dependent exotic derivatives are often not optimal!
- **•** Examples: the put option and the geometric Asian option.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

- What is cost-efficiency?
- Path-dependent strategies/payoffs are not cost-efficient.
- Explicit construction of efficient strategies.
- Investors (with a fixed horizon and law-invariant preferences) should prefer to invest in path-independent payoffs: path-dependent exotic derivatives are often not optimal!
- **•** Examples: the put option and the geometric Asian option.

Cost-Efficiency	Main result	Example	Preferences	Limits
•0000000000	00000	00000	00	00

Efficiency Cost

Dybvig (RFS 1988) explains how to compare two strategies by analyzing their respective efficiency cost.

What is the "efficiency cost"?

It is a criteria for evaluating payoffs independent of the agents' preferences.

Cost-Efficiency	Main result	Example	Preferences	Limits
0000000000	00000	00000	00	00

Some Assumptions

- Consider an arbitrage-free market.
- Given a strategy with payoff X_T at time T. There exists Q, such that its price at 0 is

$$P_X = E_Q[e^{-rT}X_T]$$

• *P* ("real measure") and *Q* ("risk-neutral measure") are two equivalent probability measures:

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP} \right)_T, \quad P_X = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T].$$

Cost-Efficiency	Main result	Example	Preferences	Limits
○●○○○○○○○○○	00000	00000	00	00

Some Assumptions

- Consider an arbitrage-free market.
- Given a strategy with payoff X_T at time T. There exists Q, such that its price at 0 is

$$P_X = E_Q[e^{-rT}X_T]$$

• *P* ("real measure") and *Q* ("risk-neutral measure") are two equivalent probability measures:

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP} \right)_T, \quad P_X = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T].$$

Cost-Efficiency	Main result	Example	Preferences	Limits
○●○○○○○○○○○	00000	00000	00	00

Some Assumptions

- Consider an arbitrage-free market.
- Given a strategy with payoff X_T at time T. There exists Q, such that its price at 0 is

$$P_X = E_Q[e^{-rT}X_T]$$

• *P* ("real measure") and *Q* ("risk-neutral measure") are two equivalent probability measures:

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP} \right)_T, \quad P_X = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T].$$

Cost-Efficiency	Main result	Example	Preferences	Limits
0000000000	00000	00000	00	00

Motivation

Investors have a strategy that will give them a final wealth X_T . This strategy depends on the financial market and is random.

• They want to maximize the **expected utility** of their final wealth X_T

$$\max_{X_{T}} (E_{P}[U(X_{T})])$$

U: utility (increasing because individuals prefer more to less).

They want to control the cost of the strategy

$$cost \ at \ 0 = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T]$$

Motivation

Investors have a strategy that will give them a final wealth X_T . This strategy depends on the financial market and is random.

• They want to maximize the **expected utility** of their final wealth X_T

 $\max_{X_T} (E_P[U(X_T)])$

U: utility (increasing because individuals prefer more to less).

They want to control the cost of the strategy

$$cost \ at \ 0 = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T]$$

Motivation

Investors have a strategy that will give them a final wealth X_T . This strategy depends on the financial market and is random.

• They want to maximize the **expected utility** of their final wealth X_T

$$\max_{X_T} (E_P[U(X_T)])$$

U: utility (increasing because individuals prefer more to less).

They want to control the cost of the strategy

cost at
$$0 = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T]$$

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

Efficiency Cost

 Given a strategy with payoff X_T at time T, and initial price at time 0

$$P_X = E_P \left[\xi_T X_T \right]$$

• $F : X_T$'s distribution under the **physical measure** P.

The distributional price is defined as

$$PD(F) = \min_{\{Y_T \mid Y_T \sim F\}} \{E_P[\xi_T Y_T]\}$$

The "loss of efficiency" or "efficiency cost" is equal to:

$$P_X - PD(F)$$

Cost-Efficiency	Main result	Example	Preferences	Limits
0000000000	00000	00000	00	00

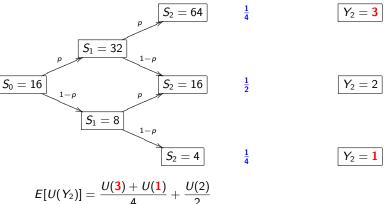
A Simple Illustration

Let's illustrate what the "efficiency cost" is with a simple example. Consider :

- A market with 2 assets: a bond and a stock S.
- A discrete 2-period binomial model for the stock S.
- A strategy with payoff X_T at the end of the two periods.
- An expected utility maximizer with utility function U.

Cost-Efficiency	Main result	Example	Preferences	Limits
0000000000	00000	00000	00	00

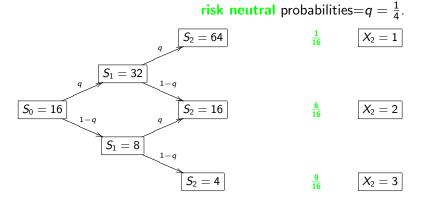
Real probabilities= $p = \frac{1}{2}$ $S_2 = 64$ $\frac{1}{4}$ $X_2 = 1$ р $S_1 = 32$ 1 - pр $S_0 = 16$ $S_2 = 16$ $\frac{1}{2}$ $X_2 = 2$ 1 - pр $S_1 = 8$ 1-p14 $S_2 = 4$ $X_2 = 3$ $E[U(X_2)] = \frac{U(1) + U(3)}{4} + \frac{U(2)}{2}$



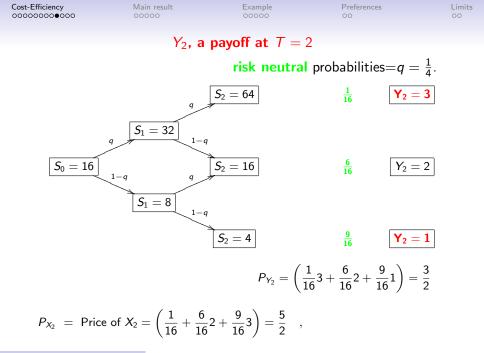
(X and Y have the same distribution under the physical measure and thus the same utility)

Cost-Efficiency	Main result	Example	Preferences	Limits
000000000000	00000	00000	00	00

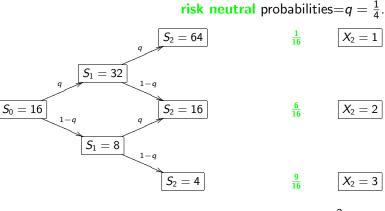
X_2 , a payoff at T = 2



$$P_{X_2}$$
 = Price of $X_2 = \left(\frac{1}{16} + \frac{6}{16}2 + \frac{9}{16}3\right) = \frac{5}{2}$



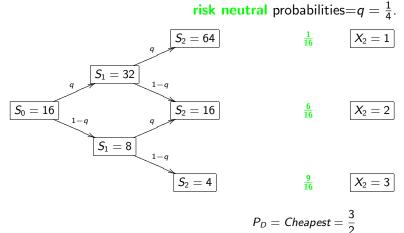
Cost-Efficiency	Main result	Example	Preferences	Limits
000000000000	00000	00000	00	00



 $P_D = Cheapest = \frac{3}{2}$

$$P_{X_2} = \text{Price of } X_2 = \frac{5}{2} \quad ,$$

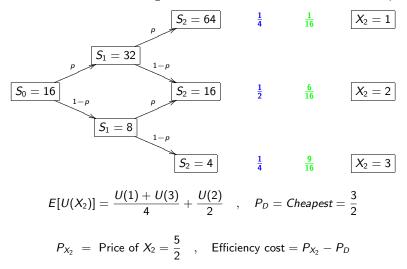
Cost-Efficiency	Main result	Example	Preferences	Limits
000000000000	00000	00000	00	00



$$P_{X_2}$$
 = Price of $X_2 = \frac{5}{2}$, Efficiency cost = $P_{X_2} - P_D$

Cost-Efficiency	Main result	Example	Preferences	Limits
0000000000	00000	00000	00	00

Real probabilities= $p = \frac{1}{2}$ and **risk neutral** probabilities= $q = \frac{1}{4}$.



Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	0000	00000	00	00

Cost-Efficiency

- The **cost** of the payoff X_T is $c(X_T) = E[\xi_T X_T]$.
- The "distributional price" of a cdf F is defined as

$$PD(F) = \min_{\{Y \mid Y \sim F\}} \{c(Y)\}$$

We want to find the strategy Y that realizes this minimum. Given a payoff X_T with cdf F. We define its inverse F^{-1} as follows:

$$F^{-1}(y) = \min \{x / F(x) \ge y\}.$$

Theorem

Define

$$X_T^{\star} = F^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right)$$

then $X_T^{\star} \sim F$ and X_T^{\star} is a.s. unique such that

$$PD(F) = c(X_T^{\star})$$

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	0000	00000	00	00

Path-dependent payoffs are inefficient

Corollary

To be cost-efficient, the payoff of the derivative has to be of the following form:

$$X_T^{\star} = F^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right)$$

It becomes a European derivative written on S_T as soon as the state-price process ξ_T can be expressed as a function of S_T . Thus path-dependent derivatives are in general not cost-efficient.

Corollary

Consider a derivative with a payoff X_T which could be written as

$$X_T = h(\xi_T)$$

Then X_T is cost efficient if and only if h is non-increasing.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	0000	00000	00	00

Black and Scholes Model

Under the physical measure P,

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t^P$$

Under the risk neutral measure Q,

$$\frac{dS_t}{S_t} = rdt + \sigma dW_t^Q$$

 S_t has a lognormal distribution.

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP}\right)_T = e^{-rT} a \left(\frac{S_T}{S_0}\right)^{-b}$$

where $a = \exp\left(\frac{1}{2}Tb(r+\mu-\sigma^2)-rT\right)b = \frac{\mu-r}{\sigma^2}$.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

Black and Scholes Model

Any path-dependent financial derivative is inefficient. Indeed

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP}\right)_T = e^{-rT} a \left(\frac{S_T}{S_0}\right)^{-b}$$

where $a = \exp\left(\frac{1}{2}Tb(r+\mu-\sigma^2)-rT\right)b = \frac{\mu-r}{\sigma^2}$.

To be cost-efficient, the payoff has to be written as

$$X^{\star} = F^{-1} \left(1 - F_{\xi} \left(a \left(\frac{S_T}{S_0} \right)^{-b} \right) \right)$$

It is a European derivative written on the stock S_T (and the payoff is increasing with S_T when $\mu > r$).

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

The Least Efficient Payoff

Theorem

Let F be a cdf such that F(0) = 0. Consider the following optimization problem:

$$\max_{\{Z \mid Z \sim F\}} \{c(Z)\}$$

The strategy Z_T^{\star} that generates the same distribution as F with the highest cost can be described as follows:

$$Z_T^{\star} = F^{-1}\left(F_{\xi}\left(\xi_T\right)\right)$$

Consider a strategy with payoff X_T distributed as F. The cost of this strategy satisfies

$$P_D(F) \leq c(X_T) \leq E[\xi_T F^{-1}(F_{\xi}(\xi_T))] = \int_0^1 F_{\xi}^{-1}(v) F^{-1}(v) dv$$

Put option in Black and Scholes model

Assume a strike K. The payoff of the put is given by

$$L_T = (K - S_T)^+ \, .$$

The payoff that has the **lowest** cost and is distributed such as the put option is given by

$$Y_T^{\star} = F_L^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right).$$

Put option in Black and Scholes model

Assume a strike K. The payoff of the put is given by

$$L_T = (K - S_T)^+ \, .$$

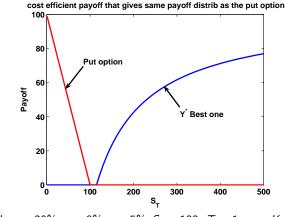
The cost-efficient payoff that will give the same distribution as a put option is

$$Y_T^{\star} = \left(K - \frac{S_0^2 e^{2\left(\mu - \frac{\sigma^2}{2}\right)T}}{S_T} \right)^+$$

This type of power options "dominates" the put option.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

Cost-efficient payoff of a put



With $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$, T = 1 year, K = 100. Distributional price of the put = 3.14 Price of the put = 5.57 Efficiency loss for the put = 5.57-3.14= 2.43

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

Geometric Asian contract in Black and Scholes model

Assume a strike K. The payoff of the Gemoetric Asian call is given by

$$G_{T} = \left(e^{rac{1}{T}\int_{0}^{T}\ln(S_{t})dt} - K
ight)^{+}$$

which corresponds in the discrete case to $\left(\left(\prod_{k=1}^{n} S_{\frac{kT}{n}}\right)^{\frac{1}{n}} - K\right)^{\top}$.

The efficient payoff that is distributed as the payoff G_T is given by

$$G_T^{\star} = d \left(S_T^{1/\sqrt{3}} - \frac{K}{d} \right)^+$$

where $d := S_0^{1-\frac{1}{\sqrt{3}}} e^{\left(\frac{1}{2}-\sqrt{\frac{1}{3}}\right)\left(\mu-\frac{\sigma^2}{2}\right)T}$. This payoff G_T^{\star} is a power call option. If $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$. The price of a geometric Asian option is 5.94. The payoff G_T^{\star} costs only 5.77. Similar result in the discrete case.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	00

Geometric Asian contract in Black and Scholes model

Assume a strike K. The payoff of the Gemoetric Asian call is given by

$$G_T = \left(e^{rac{1}{T}\int_0^T \ln(S_t)dt} - K
ight)^+$$

which corresponds in the discrete case to $\left(\left(\prod_{k=1}^{n} S_{\frac{kT}{n}}\right)^{\frac{1}{n}} - K\right)^{\top}$. The efficient payoff that is distributed as the payoff G_{T} is given by

$$G_T^{\star} = d \left(S_T^{1/\sqrt{3}} - \frac{K}{d} \right)^+$$

here $d := S_0^{1 - \frac{1}{\sqrt{3}}} e^{\left(\frac{1}{2} - \sqrt{\frac{1}{3}}\right) \left(\mu - \frac{\sigma^2}{2}\right) T}$.
his payoff G_T^{\star} is a power call option. If $\sigma = 20\%, \mu = 9\%$,
 $= 5\%, S_0 = 100$. The price of a geometric Asian option is 5.94
he payoff G_T^{\star} costs only 5.77.

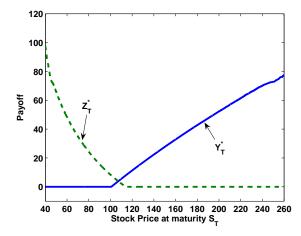
Similar result in the discrete case.

Carole Bernard

W T r T

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	0000●	00	00

Example: the discrete Geometric option



With $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$, T = 1 year, K = 100, n = 12. Price of a geometric Asian option = 5.94. The distributional price is 5.77. The payoff Z_T^* costs 9.03.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	•0	00

Utility Independent Criteria

Denote by

- X_T the final wealth of the investor,
- $V(X_T)$ the objective function of the agent,

Assumptions (adopted by Dybvig (JoB1988,RFS1988))

- Agents' preferences depend only on the probability distribution of terminal wealth: "law-invariant" preferences. (if X_T ~ Z_T then: V(X_T) = V(Z_T).)
- **2** Agents prefer "more to less": if c is a non-negative random variable $V(X_T + c) \ge V(X_T)$.
- The market is perfectly liquid, no taxes, no transaction costs, no trading constraints (in particular short-selling is allowed).
- The market is arbitrage-free.

For any inefficient payoff, there exists another strategy that these agents will prefer.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	•0	00

Utility Independent Criteria

Denote by

- X_T the final wealth of the investor,
- $V(X_T)$ the objective function of the agent,

Assumptions (adopted by Dybvig (JoB1988,RFS1988))

- Agents' preferences depend only on the probability distribution of terminal wealth: "law-invariant" preferences. (if X_T ~ Z_T then: V(X_T) = V(Z_T).)
- **2** Agents prefer "more to less": if c is a non-negative random variable $V(X_T + c) \ge V(X_T)$.
- The market is perfectly liquid, no taxes, no transaction costs, no trading constraints (in particular short-selling is allowed).
- The market is arbitrage-free.

For any inefficient payoff, there exists another strategy that these agents will prefer.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	0●	00

Link with First Stochastic Dominance

Theorem

Consider a payoff X_T with cdf F,

Taking into account the initial cost of the derivative, the cost-efficient payoff X^{*}_T of the payoff X_T dominates X_T in the first order stochastic dominance sense :

$$X_T - c(X_T)e^{rT} \prec_{fsd} X_T^{\star} - P_D(F)e^{rT}$$

The dominance is strict unless X_T is a non-increasing function of ξ_T.

Thus the result is true for any preferences that respect first stochastic dominance.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	•0

- State-dependent needs
 - Background risk:
 - Hedging a long position in the market index S_T (background risk) by purchasing a put option P_T ,
 - the background risk can be path-dependent.
 - Stochastic benchmark or other constraints: If the investor wants to outperform a given (stochastic) benchmark Γ such that:

$$P\left\{\omega\in\Omega \,|\, W_{\mathcal{T}}(\omega)>\Gamma(\omega)\right\} \geqslant \alpha.$$

• Intermediary consumption.

- Other sources of uncertainty: the state-price process is not always a monotonic function of S_T (non-Markovian interest rates for instance)
- Transaction costs, frictions: Preference for an available inefficient contract rather than a cost-efficient payoff that one needs to replicate.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	•0

- State-dependent needs
 - Background risk:
 - Hedging a long position in the market index S_T (background risk) by purchasing a put option P_T ,
 - the background risk can be path-dependent.
 - Stochastic benchmark or other constraints: If the investor wants to outperform a given (stochastic) benchmark Γ such that:

$$P\left\{\omega\in\Omega \,|\, W_{\mathcal{T}}(\omega)>\Gamma(\omega)\right\} \geqslant \alpha.$$

• Intermediary consumption.

- Other sources of uncertainty: the state-price process is not always a monotonic function of S_T (non-Markovian interest rates for instance)
- Transaction costs, frictions: Preference for an available inefficient contract rather than a cost-efficient payoff that one needs to replicate.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	•0

- State-dependent needs
 - Background risk:
 - Hedging a long position in the market index S_T (background risk) by purchasing a put option P_T ,
 - the background risk can be path-dependent.
 - Stochastic benchmark or other constraints: If the investor wants to outperform a given (stochastic) benchmark Γ such that:

$$P\left\{\omega\in\Omega / W_{\mathcal{T}}(\omega) > \Gamma(\omega)\right\} \geqslant \alpha.$$

- Intermediary consumption.
- Other sources of uncertainty: the state-price process is not always a monotonic function of S_T (non-Markovian interest rates for instance)
- Transaction costs, frictions: Preference for an available inefficient contract rather than a cost-efficient payoff that one needs to replicate.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	•0

- State-dependent needs
 - Background risk:
 - Hedging a long position in the market index S_T (background risk) by purchasing a put option P_T ,
 - the background risk can be path-dependent.
 - Stochastic benchmark or other constraints: If the investor wants to outperform a given (stochastic) benchmark Γ such that:

$$P\left\{\omega\in\Omega / W_{\mathcal{T}}(\omega) > \Gamma(\omega)\right\} \geqslant \alpha.$$

- Intermediary consumption.
- Other sources of uncertainty: the state-price process is not always a monotonic function of S_T (non-Markovian interest rates for instance)
- Transaction costs, frictions: Preference for an available inefficient contract rather than a cost-efficient payoff that one needs to replicate.

Cost-Efficiency	Main result	Example	Preferences	Limits
00000000000	00000	00000	00	0●

Conclusion

- A preference free framework for ranking different investment strategies.
- For a given investment strategy, we derive an explicit analytical expression
 - I for the cheapest strategy that has the same payoff distribution.
 - If or the most expensive strategy that has the same payoff distribution.
- There are strong connections between this approach and stochastic dominance rankings.

This may be useful for improving the design of financial products.