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Background & Objectives

» ( “Explicit representation of Cost-efficient Strategies” with
Phelim Boyle (Wilfrid Laurier University))

e Given a cdf F, there exists an explicit representation of X7’5
and of ZF such that
» X7 ~ F and Z¥ ~ F in the real world
» X7 is the cheapest strategy (= cost-efficient strategy)
> Z;( is the most expensive strategy (= cost-inefficient strategy)

= Price(claim)e [C(X?f), C(Zﬁ]
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Background & Objectives

» ( “Explicit representation of Cost-efficient Strategies” with
Phelim Boyle (Wilfrid Laurier University))

e Given a cdf F, there exists an explicit representation of X7’5
and of ZF such that
» X7 ~ F and Z¥ ~ F in the real world
» X7 is the cheapest strategy (= cost-efficient strategy)
> Z;( is the most expensive strategy (= cost-inefficient strategy)
= Price(claim)e [c(XF), ¢(ZF)]
» Our objectives:

@ To propose a “market-consistent” pricing tool
@ To find similar bounds
® on prices of claims that cannot be hedged perfectly in the
market.
e but for which we know the cdf under the physical probability.

Carole Bernard Financial Bounds for Insurance Claims 2/29



Introduction Cost-Efficiency Example Bounds Example Conclusions

Some Assumptions

e Consider an arbitrage-free and complete market.

e Given a strategy with payoff Xt at time T. There exists Q,
such that its price at 0 is

Px = Egle " X71]

e P (“physical measure”) and Q (“risk-neutral measure”) are
two equivalent probability measures:

Er = e T (jg) ,  ¢(Xt) :EQ[eirTXT] = Ep[&rXT].
T
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e Given a strategy with payoff X7 at time T, and initial price at

time 0
c(X) = E[¢rXT]

e F : Xy's distribution under the physical measure P.

The distributional price is defined as

PD(F) = i {E[ETY]} = L c(Y)

(lower bound on the price of a financial claim with cdf F)
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e Given a strategy with payoff X7 at time T, and initial price at

time 0
c(X) = E[¢rXT]

e F : Xy's distribution under the physical measure P.

The distributional price is defined as

PD(F) = i {E[ETY]} = L c(Y)

(lower bound on the price of a financial claim with cdf F)

= Example of X ~ Y with different costs in a binomial tree.
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A simple illustration for X,, a payoff at T =2

Real-world probabilities=p = %
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Y>, a payoff at T = 2 distributed as X,

Real-world probabilities=p = %
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X and Y have the same distribution under the physical measure

Carole Bernard Financial Bounds for Insurance Claims

6/29



Introduction Cost-Efficiency Example Bounds Example Conclusions

Xo, a payoff at T =2

risk neutral

probabilities=q = %.
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Px, = Price of Xo = (E+1—62+1—63) = —
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Y>, a payoff at T =2

risk neutral

probabilities=q = %.

. 1 6 9 5
Px, = P”CGOfX27<176+1762+1763)75 ,
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Minimum Price = Cost-efficient Strategy

Theorem

Consider the following optimization problem:

- Tné“NF} {E[¢r2]}

Assume &7 is continuously distributed, then the optimal strategy is
X¥=F7 (1— Fe (67)).
Note that XF ~ F and X¥ is a.s. unique such that

PD(F) = c(X7) = B [¢7XF]
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Maximum price = Least Efficient Strategy

Theorem

Consider the following optimization problem:

212, (ElerZl)

Assume £t is continuously distributed. The strategy Z¥ that
generates the same distribution as F with the highest cost can be
described as follows:

Z5 = F (Fe(67))
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Black and Scholes Model

Under the physical measure P,

5 _ pdt + odW,r
St

o (deY _ (Sr\7*
ree (cw)—a<so)

where a = eg(’“aé)t*(’*%)t and b= &L,

To be cost-efficient, the contract hacsr to be a European
derivative written on St and non-decreasing w.r.t. St (when
i = r). In this case,

Then

X3 = F7(Fs, (S7))
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Geometric Asian contract in Black and Scholes model
Assume a strike K. The payoff of the Geometric Asian call is given
by

XT e (e% fOT In(sf)dt _ K>+

1 +
which corresponds in the discrete case to <<H2_1 5kl> "—K

The efficient payoff that is distributed as the payoff X+ is a power

call option
K\*
Xt =d <51T/‘/§— d)

1—-L (l, l) M*é T
where d := 5, Vig\? V3 < 2) )
Similar result in the discrete case.
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Example: Discrete Geometric Option

120 T T T T T T T T T T

100¢ b

40 60 80 100 120 140 160 180 200 220 240 260
Stock Price at maturity ST

With ¢ = 20%, u = 9%, r = 5%, So = 100, T =1 year, K = 100, n = 12.

C(XF) = 5.77 < Price(geometric Asian) = 5.94 < C(ZF) = 9.03.
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Bounds on Prices

e Consider a financial claim at time T with cdf F.

o Denote by XT the cheapest strategy with cdf F and by ZF
the most expensive strategy with cdf F,
= Cost(claim)e [c(XF), c(ZF)]

How to use these bounds for insurance claims?

@ Let Cy be a random non-negative insurance payoff (not
traded) with distribution F.

@ Under some conditions, it also follows that
Price(Ct) > c(XF).

but in general there is no upper bound (independent of the
preferences).
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Assumptions on Preferences

Denote by X7 the final wealth of the investor and V/(X7) the
objective function of the agent.

@ Market participants all have a fixed investment horizon T > 0
and there is no intermediate consumption (one-period model).

@ Agents’ preferences depend only on the probability
distribution of terminal wealth: “law-invariant” preferences.
(if X1 ~ Z71 then: V(XT) = V(ZT))

© Agents prefer “more to less”: if ¢ is a non-negative
random variable V(X7 + ¢) > V(X7).

@ Agents are risk-averse:

E[X7] = E[Y7]
{ vd GTR,E[(XTT— a7 < Bl(yy — )] — VXT) = V(T)
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Bid and Ask prices for insurance claims
in the absence of a financial market
using “certainty equivalents”

e From the viewpoint of the insured with objective function
U(-) and initial wealth w the (bid) price, p®,

Ul(w — p?)e’T] = Ulwe™ — C1].

e From the viewpoint of the insurer with a given objective
function V/(-) and initial wealth w the ask price, p?,

V[(w + p)e’T — Cr] = V]we].
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© Bid and Ask prices verify

pe > e "TE[CT].

@ |If the insurer is risk neutral (v(x) = x), then

pb > pa =€ "TE[CT]
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Properties

© Bid and Ask prices verify

pe > e TE[Cr].

@ If the insurer is risk neutral (v(x) = x), then

Pb = Pa = e_rTE[CT]

Carole Bernard Financial Bounds for Insurance Claims
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Properties

© Bid and Ask prices verify

pe > e TE[Cr].

@ If the insurer is risk neutral (v(x) = x), then

Pb = Pa = e_rTE[CT]

© In the case of exponential utility p, = pp.
@ In the case of Yaari's theory p, = pp.
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Properties

© Bid and Ask prices verify

pe > e TE[Cr].

@ If the insurer is risk neutral (v(x) = x), then

Pb = Pa = e_rTE[CT]

In the case of exponential utility p, = pp.

In the case of Yaari's theory p, = pp.

© 00

In general, nothing can be said. u(x) = v(x) =1 — 1/x, both
agents have same initial wealth, Ct ~ U(0,2). Next figure
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Bid and Ask prices in the presence of a financial market

e From the viewpoint of the insured with objective U(-) and
initial wealth w the (bid) price, p?, follows from

sup {U[X7]} = sup {U[Xr-Cr]}.
X7EA(w—pb) XreEA(W)

e From the viewpoint of the insurer with objective V/(-) and
initial wealth w the ask price, p?, follows from

swp {VIXr—Crl) = sup {VIXe]).
XreA(w+p?) XT€EA(W)
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Bid and Ask prices in the presence of a financial market

e From the viewpoint of the insured with objective U(-) and
initial wealth w the (bid) price, p?, follows from

sup {U[X7]} = sup {U[Xr-Cr]}.
X7EA(w—pb) XreEA(W)

e From the viewpoint of the insurer with objective V/(-) and
initial wealth w the ask price, p?, follows from

swp {VIXr—Crl) = sup {VIXe]).
XreA(w+p?) XT€EA(W)

e In general computing explicitly p? and p? is not in reach.
e (Market Consistency) If Ct is hedgeable, then

pr = pa = E[{TCT].
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Lower bound

e Assuming that decision makers are risk averse,

Theorem

Using the abusive notation p® to reflect both p? and p®,

p® > E[¢7.Cr].

Furthermore, the lower bound E[¢1.CT] is the market price of the
financial payoff E[Cr|{7]

e Note that
p* > eirT.E[CT] + COV[CT,fr].
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Comments

e Hence when the claim C7 and the state-price £ are negatively
correlated we find that e~"".[E[C7] is no longer a lower bound
for p? and p? which contrasts with traditional bound stated in
many actuarial textbooks on insurance pricing.

e Finally, remark that the inequality essentially states that both the
insured and the insurer are prepared to agree on a price for the
insurance payoff C+ which is larger than the price “as if Ct
would be a financial payoff”.
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Comments (Cont'd): 3 cases:

e (71 is independent of the market,
p* > e "T.E[CT].

e (7 is positively correlated with the state-price process,
the classical lower bound e~"TE[Ct] is now strictly improved.

p* > e "TE[C] + Cov[Cr,&7] > e T .E[CT].

e (7 is negatively correlated with the state-price process,
the lower bound is smaller

p* > e 'T.E[Cy] + Cov[CT,&7].

The best lower bound for equity-linked insurance benefits will
generally be lower than e~""IE[C7] because

Cov(ST.¢7) = E[STér] - EISTIEET] = e (Eq[ST] — E[ST]),
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Index-Linked Contract

» A life insurance company wants to reinsure payments of
(K — S7)* paid to a policyholder if alive at time T.

CT = (K - ST)+]17->T
where 7 denotes the policyholder’s time of death.
» A reinsurer offers full coverage.

E[¢rE[Cr|ér]] = El€rCr] = p(e™ T K — So + Cps(So, K. T))

where p =P(7 > T) and Cps(So, K, T) is the Black Scholes
call price.
» u: insurer’s utility

u(x)=1— exp(—7x)
8
where the absolute risk aversions v > 0.
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Bid Price
Define ki(.) and ka(.) such that for a given wealth z

k(z)= sup Bu(Xr— Cr]
XTGA(Z)

and

ko(z)= sup Blu(X7)].
X7€A(2)

Carole Bernard Financial Bounds for Insurance Claims 24/29



Introduction Cost-Efficiency Example Bounds Example Conclusions

Bid Price
Define ki(.) and ka(.) such that for a given wealth z

k(z)= sup Bu(Xr— Cr]
XTGA(Z)

and

ko(z)= sup Blu(X7)].
X7€A(2)

To calculate explicitly ki(z), we first observe that

ki(z) = . seu;)( )]E [E[u(XT—(K—=51)"1s7)|7]]
= sup E[pu(Xr—(K—=5S7)") + (1 - p)u(Xr)]
X71€A(2)

where p=P(7 > T) and 7 is independent of X7 and St.
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Computation of ki: Pathwise Optimization
We maximize pathwise. Let w € , then define
o(x) = pu (X — (K - ST(w))+) + (1= p)u(x) — X7 (w)x

It is obvious that ¢” < 0 and therefore that ¢ is concave and
attains its maximum at x* defined by

¢'(x") =0.

For A > 0 and for each w € Q, define X7(\,w) = x*. If there
exists A such that E[{7X}(\)] = z then X37(\) is an optimal
solution and

ki(2) = Blu (X3 — (K = S7) 1o 7))
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lHlustration

Next slide illustrates how to calculate explicitly bid prices.
Recall that for a given wealth z

k(z)= sup Blu(Xr— Cr)]
XTEA(Z)

and

bo(z)= sup Blu(X7)].
XT€EA(2)

Parameters are r = 2%, 0 = 0.2, u = 4%, So =10, T =1,
K=12 v=02 p=0.7.
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Bid and ask prices with respect to survival probability p
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Conclusion

e Market consistent pricing of insurance claims

e Preference-free bounds on prices of financial and insurance
claims

e These bounds correspond to prices of some financial payoffs
that we give explicitly

e These bounds are robust in the sense that they are derived
under rather mild assumptions
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Thanks!
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Additional Material
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Put option in Black and Scholes model
Assume a strike K. The payoff of the put is given by
Lt = (K -S7)".
The payoff that has the lowest cost and is distributed such as the
put option is given by

Y7 =F ' (Fsr (S7)) = [ K- =2

This type of power option “dominates” the put option.
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Cost-efficient payoff of a put

cost efficient payoff that gives same payoff distrib as the put option
100 T T -

80r

Put option

601

Payoff

a0 Y’ Best one

201

0 100 200 300 400 500

Sy

With o = 20%, u = 9%, r = 5%, So = 100, T =1 year, K = 100.
Distributional price of the put = 3.14
Price of the put = 5.57
Efficiency loss for the put = 5.57-3.14= 2.43
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Toy example Equity-Linked Insurance

Simplest possible insurance claim that pays at time T = 1 a payoff
C; distributed as a Bernoulli with parameter p = 0.001.
P(Gi=1)=pand P(GG=0)=1—p.

3 cases:
First, the insurance claim C is linked to the death of a specific
individual, then

E[G&] = E[G].

Bid and ask prices p*® satisfy

p* > E[GE[G&]] = e "E[G] = e "P(death).

Carole Bernard Financial Bounds for Insurance Claims 35/29



Introduction Cost-Efficiency Example Bounds Example Conclusions

Second, (7 pays 1 if a designated person dies and the risky asset
in the market is higher than a value H or equivalently
{& < L} = {51 > H}) and

E[Cl‘gl] = E[]ldeath]l£1<L‘§1]
= P(death)l¢ <.

The market price of the claim E[C;|¢1] is e™".P(death)Q(S1 > H)
and thus bid and ask prices satisfy

p* > e ".P(death)Q(S1 > H),
e "E[C1] = e”"P(death)P(S1 > H) > e "P(death)Q(S1 > H).
Third, C; pays 1 if a designated person dies and the risky asset in
the market is lower than a value H. Then, Cov((Cy,&1) > 0 and

p* > E[6E[C|&1]] = P(death).Q(S: < H) > e "E[Ci].
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Corollary: Optimal Investment (key)

Corollary

Denote by V/(-) the objective function and given an initial wealth
w € R it holds that

sup V(X7)= sup V(X7), (1)
XTEA(W) XTeAg(W)

where

A(w) is the set of random wealths Xt that can be generated
at maturity T > 0 with an initial wealth w,

Ac(w) is the subset of random wealths that are almost surely
anti-comonotonic with {1 (in other words which are almost
surely a non-increasing function of 7).
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