Financial Bounds for Insurance Claims

Carole Bernard (University of Waterloo, WatRISQ) Steven Vanduffel (Vrije Universiteit Brussel, Belgium).

Waterloo Research Institute in Insurance, Securities & Quantitative Einance

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions		
Background & Objectives							

- ("Explicit representation of Cost-efficient Strategies" with Phelim Boyle (Wilfrid Laurier University))
- Given a cdf F, there exists an explicit representation of X^{*}_T and of Z^{*}_T such that
 - $X_T^{\star} \sim F$ and $Z_T^{\star} \sim F$ in the real world
 - X_T^{\star} is the cheapest strategy (= cost-efficient strategy)
 - > Z_T^{\star} is the most expensive strategy (= cost-inefficient strategy)

 $\Rightarrow \mathsf{Price}(\mathsf{claim}) \in \left[c(X_T^{\star}), c(Z_T^{\star})\right]$

Our objectives:

- To propose a "market-consistent" pricing tool
- 2 To find similar bounds
 - on prices of claims that cannot be hedged perfectly in the market.
 - but for which we know the cdf under the physical probability.

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions		
Background & Objectives							

- ("Explicit representation of Cost-efficient Strategies" with Phelim Boyle (Wilfrid Laurier University))
 - Given a cdf F, there exists an explicit representation of X^{*}_T and of Z^{*}_T such that
 - $X_T^{\star} \sim F$ and $Z_T^{\star} \sim F$ in the real world
 - X_T^{\star} is the cheapest strategy (= cost-efficient strategy)
 - > Z_T^{\star} is the most expensive strategy (= cost-inefficient strategy)

 $\Rightarrow \mathsf{Price}(\mathsf{claim}) \in \left[c(X_T^{\star}), c(Z_T^{\star})\right]$

Our objectives:

- To propose a "market-consistent" pricing tool
- 2 To find similar bounds
 - on prices of claims that cannot be hedged perfectly in the market.
 - but for which we know the cdf under the physical probability.

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
		~			

Some Assumptions

- Consider an arbitrage-free and complete market.
- Given a strategy with payoff X_T at time T. There exists Q, such that its price at 0 is

$$P_X = \mathbb{E}_Q[e^{-rT}X_T]$$

• *P* ("physical measure") and *Q* ("risk-neutral measure") are two equivalent probability measures:

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP} \right)_T, \quad \mathbf{c}(\mathbf{X}_{\mathsf{T}}) = \mathbb{E}_Q[e^{-rT}X_T] = \mathbb{E}_{\mathsf{P}}[\xi_{\mathsf{T}}\mathbf{X}_{\mathsf{T}}].$$

troduction

• Given a strategy with payoff X_T at time T, and initial price at time 0

$$c(X) = \mathbb{E}\left[\xi_T X_T\right]$$

• $F : X_T$'s distribution under the **physical measure** P.

The distributional price is defined as

$$PD(F) = \min_{\{Y \mid Y \sim F\}} \{\mathbb{E}[\xi_T Y]\} = \min_{\{Y \mid Y \sim F\}} c(Y)$$

(lower bound on the price of a financial claim with cdf F)

 \Rightarrow Example of $X \sim Y$ with different costs in a binomial tree.

ntroductior

• Given a strategy with payoff X_T at time T, and initial price at time 0

$$c(X) = \mathbb{E}\left[\xi_T X_T\right]$$

• $F : X_T$'s distribution under the **physical measure** P.

The distributional price is defined as

$$PD(F) = \min_{\{Y \mid Y \sim F\}} \{\mathbb{E}[\xi_T Y]\} = \min_{\{Y \mid Y \sim F\}} c(Y)$$

(lower bound on the price of a financial claim with cdf F)

 \Rightarrow Example of $X \sim Y$ with different costs in a binomial tree.

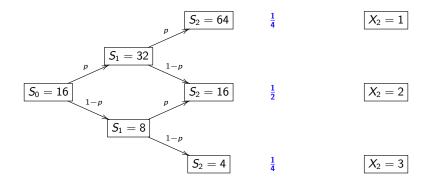
Introduction

Cost-Efficiency

Example

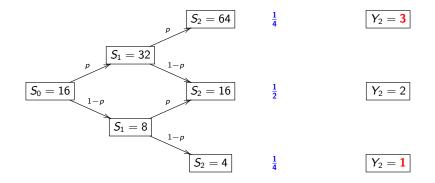
Conclusions

A simple illustration for X_2 , a payoff at T = 2Real-world probabilities= $p = \frac{1}{2}$



Y_2 , a payoff at T = 2 distributed as X_2

Real-world probabilities= $p = \frac{1}{2}$

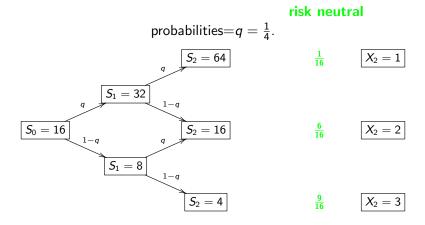


X and Y have the same distribution under the physical measure

Bounds

Conclusions

X_2 , a payoff at T = 2



$$P_{X_2}$$
 = Price of $X_2 = \left(\frac{1}{16} + \frac{6}{16}2 + \frac{9}{16}3\right) = \frac{5}{2}$

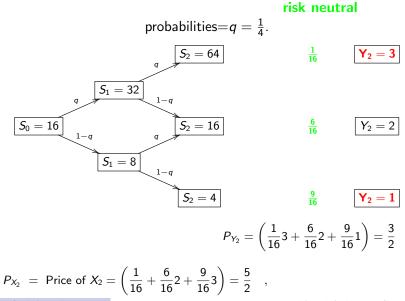
Carole Bernard

Financial Bounds for Insurance Claims 7/29

Introduction				- 1			
		τ	r				

Bou

Y_2 , a payoff at T = 2



Carole Bernard

Financial Bounds for Insurance Claims 8/29

Int		du	c+i	0.0
IIII	.10	uu	CU	UII

Bounds

Example

Conclusions

Minimum Price = Cost-efficient Strategy

Theorem

Consider the following optimization problem:

$$\min_{\{Z \mid Z \sim F\}} \{ \mathbb{E} [\xi_T Z] \}$$

Assume ξ_T is continuously distributed, then the optimal strategy is

$$X_T^{\star} = F^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right).$$

Note that $X_T^{\star} \sim F$ and X_T^{\star} is a.s. unique such that

$$PD(F) = c(X_T^{\star}) = \mathbb{E}\left[\xi_T X_T^{\star}\right]$$

	Maximum price = Least Efficient Strategy								
Introduction	Cost-Efficiency Example Bounds Example Conclu								

Theorem

Consider the following optimization problem:

$$\max_{\{Z \mid Z \sim F\}} \{ \mathbb{E} [\xi_T Z] \}$$

Assume ξ_T is continuously distributed. The strategy Z_T^* that generates the same distribution as F with the highest cost can be described as follows:

$$Z_T^{\star} = F^{-1}\left(F_{\xi}\left(\xi_T\right)\right)$$

Βοι

Example

Conclusions

Black and Scholes Model

Under the physical measure P,

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t^P$$

Then

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP} \right) = a \left(\frac{S_T}{S_0} \right)^{-b}$$

where $a = e^{\frac{\theta}{\sigma}(\mu - \frac{\sigma^2}{2})t - (r + \frac{\theta^2}{2})t}$ and $b = \frac{\mu - r}{\sigma^2}$.

To be cost-efficient, the contract has to be a European derivative written on S_T and non-decreasing w.r.t. S_T (when $\mu \ge r$). In this case,

$$X_T^{\star} = F^{-1}\left(F_{S_T}\left(S_T\right)\right)$$

Boun

Geometric Asian contract in Black and Scholes model

Assume a strike K. The payoff of the Geometric Asian call is given by

$$X_{\mathcal{T}} = \left(e^{rac{1}{T}\int_0^T \ln(S_t)dt} - K
ight)^+$$

which corresponds in the discrete case to $\left(\left(\prod_{k=1}^{n} S_{kT}\right)^{\frac{1}{n}} - K\right)^{+}$.

The efficient payoff that is distributed as the payoff X_T is a power call option

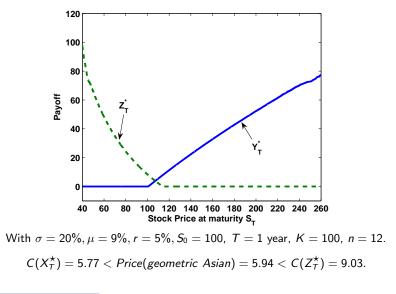
$$X_T^{\star} = d \left(S_T^{1/\sqrt{3}} - \frac{K}{d} \right)^+$$

where $d := S_0^{1-\frac{1}{\sqrt{3}}} e^{\left(\frac{1}{2}-\sqrt{\frac{1}{3}}\right)\left(\mu-\frac{\sigma^2}{2}\right)T}$. Similar result in the discrete case.

Exa

Conclusions

Example: Discrete Geometric Option



Rounda on Driege										
Introduction Cost-Efficiency Example Bounds Example Conclusions										

- **Bounds on Prices**
- Consider a financial claim at time T with cdf F.
- Denote by X^{*}_T the cheapest strategy with cdf F and by Z^{*}_T the most expensive strategy with cdf F,
 ⇒ Cost(claim)∈ [c(X^{*}_T), c(Z^{*}_T)]

How to use these bounds for insurance claims?

- Let C_T be a random non-negative **insurance payoff** (not traded) with distribution F.
- Onder some conditions, it also follows that

$$Price(C_T) \ge c(X_T^{\star}).$$

but in general there is no upper bound (independent of the preferences).

Assumptions on Preferences

Denote by X_T the final wealth of the investor and $V(X_T)$ the objective function of the agent.

- Market participants all have a fixed investment horizon T > 0and there is no intermediate consumption (one-period model).
- Agents' preferences depend only on the probability distribution of terminal wealth: "law-invariant" preferences. (if X_T ~ Z_T then: V(X_T) = V(Z_T).)
- **3** Agents prefer "more to less": if c is a non-negative random variable $V(X_T + c) \ge V(X_T)$.
- Agents are risk-averse:

$$\begin{cases} E[X_{\mathcal{T}}] = E[Y_{\mathcal{T}}] \\ \forall d \in \mathbb{R}, E[(X_{\mathcal{T}} - d)^+] \le E[(Y_{\mathcal{T}} - d)^+] \end{cases} \Rightarrow V(X_{\mathcal{T}}) \ge V(Y_{\mathcal{T}})$$

Introduction								

Bounds

Exam

Conclusions

Bid and Ask prices for insurance claims in the absence of a financial market using "certainty equivalents"

• From the **viewpoint of the insured** with objective function $U(\cdot)$ and initial wealth ω the (bid) price, p^b ,

$$U[(\omega - p^b)e^{rT}] = U[\omega e^{rT} - C_T].$$

From the viewpoint of the insurer with a given objective function V(·) and initial wealth ω the ask price, p^a,

$$V[(\omega + p^a)e^{rT} - C_T] = V[\omega e^{rT}].$$

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
		Proper	rties		

$$p_{\bullet} \geqslant e^{-rT} \mathbb{E}[C_T].$$

2 If the insurer is risk neutral (v(x) = x), then

$$p_b \geqslant p_a = e^{-rT} \mathbb{E}[C_T]$$

In the case of exponential utility $p_a = p_b$.

- In the case of Yaari's theory $p_a = p_b$.
- In general, nothing can be said. u(x) = v(x) = 1 − 1/x, both agents have same initial wealth, C_T ~ U(0,2). Next figure

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
		Proper	rties		

$$p_{\bullet} \geqslant e^{-rT} \mathbb{E}[C_T].$$

2 If the insurer is risk neutral (v(x) = x), then

$$p_b \geqslant p_a = e^{-rT} \mathbb{E}[C_T]$$

In the case of exponential utility $p_a = p_b$.

- ④ In the case of Yaari's theory $p_a = p_b$.
- In general, nothing can be said. u(x) = v(x) = 1 − 1/x, both agents have same initial wealth, C_T ~ U(0,2). Next figure

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
		Proper	rties		

$$p_{\bullet} \geqslant e^{-rT} \mathbb{E}[C_T].$$

2 If the insurer is risk neutral (v(x) = x), then

$$p_b \geqslant p_a = e^{-rT} \mathbb{E}[C_T]$$

(3) In the case of exponential utility $p_a = p_b$.

• In the case of Yaari's theory $p_a = p_b$.

○ In general, nothing can be said. u(x) = v(x) = 1 - 1/x, both agents have same initial wealth, $C_T \sim U(0,2)$. Next figure

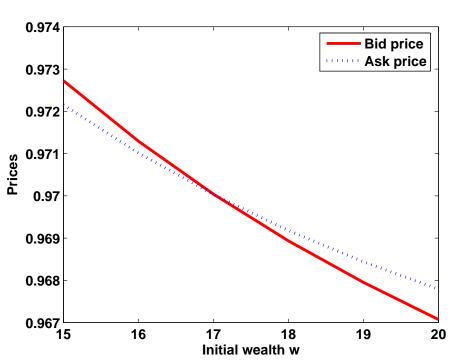
Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
		Proper	rties		

$$p_{\bullet} \geqslant e^{-rT} \mathbb{E}[C_T].$$

2 If the insurer is risk neutral (v(x) = x), then

$$p_b \geqslant p_a = e^{-rT} \mathbb{E}[C_T]$$

- **(a)** In the case of exponential utility $p_a = p_b$.
- In the case of Yaari's theory $p_a = p_b$.
- In general, nothing can be said. u(x) = v(x) = 1 1/x, both agents have same initial wealth, $C_T \sim U(0,2)$. Next figure



Bid and Ask prices in the presence of a financial market

• From the **viewpoint of the insured** with objective $U(\cdot)$ and initial wealth ω the (bid) price, p^b , follows from

$$\sup_{X_{\mathcal{T}}\in\mathcal{A}(\omega-p^b)}\left\{U[X_{\mathcal{T}}]\right\}=\sup_{X_{\mathcal{T}}\in\mathcal{A}(\omega)}\left\{U[X_{\mathcal{T}}-C_{\mathcal{T}}]\right\}.$$

• From the **viewpoint of the insurer** with objective $V(\cdot)$ and initial wealth ω the ask price, p^a , follows from

$$\sup_{X_{\mathcal{T}}\in A(\omega+p^a)}\left\{V[X_{\mathcal{T}}-C_{\mathcal{T}}]\right\}=\sup_{X_{\mathcal{T}}\in A(\omega)}\left\{V[X_{\mathcal{T}}]\right\}.$$

In general computing explicitly p^b and p^a is not in reach.
 (Market Consistency) If C_T is hedgeable, then

$$p_b = p_a = \mathbb{E}[\xi_T C_T].$$

Bid and Ask prices in the presence of a financial market

• From the **viewpoint of the insured** with objective $U(\cdot)$ and initial wealth ω the (bid) price, p^b , follows from

$$\sup_{X_{\mathcal{T}}\in\mathcal{A}(\omega-p^b)}\left\{U[X_{\mathcal{T}}]\right\}=\sup_{X_{\mathcal{T}}\in\mathcal{A}(\omega)}\left\{U[X_{\mathcal{T}}-C_{\mathcal{T}}]\right\}.$$

• From the **viewpoint of the insurer** with objective $V(\cdot)$ and initial wealth ω the ask price, p^a , follows from

$$\sup_{X_{\mathcal{T}}\in A(\omega+p^a)}\left\{V[X_{\mathcal{T}}-C_{\mathcal{T}}]\right\}=\sup_{X_{\mathcal{T}}\in A(\omega)}\left\{V[X_{\mathcal{T}}]\right\}.$$

- In general computing explicitly p^b and p^a is not in reach.
- (Market Consistency) If C_T is hedgeable, then

$$p_b = p_a = \mathbb{E}[\xi_T C_T].$$

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
		1			
		Lower b	ound		

• Assuming that decision makers are risk averse,

Theorem

Using the abusive notation p^{\bullet} to reflect both p^{a} and p^{b} ,

$$p^{\bullet} \geq \mathbb{E}[\xi_T.C_T].$$

Furthermore, the lower bound $\mathbb{E}[\xi_T . C_T]$ is the market price of the financial payoff $\mathbb{E}[C_T | \xi_T]$

• Note that

$$p^{\bullet} \geq e^{-rT} \cdot \mathbb{E}[C_T] + Cov[C_T, \xi_T].$$

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
		Comme	ents		

• Hence when the claim C_T and the state-price ξ_T are **negatively** correlated we find that e^{-rT} . $\mathbb{E}[C_T]$ is no longer a lower bound for p^b and p^a which contrasts with traditional bound stated in many actuarial textbooks on insurance pricing.

• Finally, remark that the inequality essentially states that both the insured and the insurer are prepared to agree on a price for the **insurance payoff** C_T which is larger than the price "as if C_T would be a **financial payoff"**.

Introduction Cost-Efficiency Example Bounds Example Conclusions
Comments (Cont'd): <u>3 cases:</u>

• C_T is independent of the market,

$$p^{\bullet} \geq e^{-rT}.\mathbb{E}[C_T].$$

• C_T is positively correlated with the state-price process, the classical lower bound $e^{-rT}\mathbb{E}[C_T]$ is now strictly improved.

$$p^{\bullet} \geq e^{-rT}.\mathbb{E}[C_T] + Cov[C_T, \xi_T] > e^{-rT}.\mathbb{E}[C_T].$$

• *C*_T is negatively correlated with the state-price process, the lower bound is smaller

$$p^{\bullet} \geq e^{-rT} \cdot \mathbb{E}[C_T] + Cov[C_T, \xi_T].$$

The best lower bound for equity-linked insurance benefits will generally be lower than $e^{-rT}\mathbb{E}[C_T]$ because

$$Cov(S_{\mathcal{T}},\xi_{\mathcal{T}}) = \mathbb{E}[S_{\mathcal{T}}\xi_{\mathcal{T}}] - \mathbb{E}[S_{\mathcal{T}}]\mathbb{E}[\xi_{\mathcal{T}}] = e^{-r\mathcal{T}}(\mathbb{E}_{\mathbb{Q}}[S_{\mathcal{T}}] - \mathbb{E}[S_{\mathcal{T}}]),$$

Introduction

Index-Linked Contract

A life insurance company wants to reinsure payments of (K − S_T)⁺ paid to a policyholder if alive at time T.

$$C_T = (K - S_T)^+ \mathbb{1}_{\tau > T}$$

where τ denotes the policyholder's time of death.

► A reinsurer offers full coverage.

 $\mathbb{E}[\xi_{\mathcal{T}}\mathbb{E}[C_{\mathcal{T}}|\xi_{\mathcal{T}}]] = \mathbb{E}[\xi_{\mathcal{T}}C_{\mathcal{T}}] = p(e^{-r\mathcal{T}}\mathcal{K} - S_0 + C_{bs}(S_0, \mathcal{K}, \mathcal{T}))$

where $p = \mathbb{P}(\tau > T)$ and $C_{bs}(S_0, K, T)$ is the Black Scholes call price.

u: insurer's utility

$$u(x) = 1 - \frac{\exp(-\gamma x)}{\gamma}.$$

where the absolute risk aversions $\gamma > 0$.

Introduction Cost-Efficiency Example Bounds **Example** Conclusions

Bid Price

Define $k_1(.)$ and $k_2(.)$ such that for a given wealth z

$$k_1(z) = \sup_{X_T \in A(z)} \mathbb{E}\left[u\left(X_T - C_T\right)\right]$$

and

$$k_2(z) = \sup_{X_T \in A(z)} \mathbb{E}\left[u\left(X_T\right)\right].$$

To calculate explicitly $k_1(z)$, we first observe that

$$k_{1}(z) = \sup_{X_{T} \in A(z)} \mathbb{E} \left[\mathbb{E} \left[u \left(X_{T} - (K - S_{T})^{+} \mathbb{1}_{\tau > T} \right) | \tau \right] \right] \\ = \sup_{X_{T} \in A(z)} \mathbb{E} \left[p u \left(X_{T} - (K - S_{T})^{+} \right) + (1 - p) u \left(X_{T} \right) \right]$$

where $p = \mathbb{P}(\tau > T)$ and τ is independent of X_T and S_T .

ntroduction Cost-Efficiency Example Bounds **Example** Conclusions

Bid Price

Define $k_1(.)$ and $k_2(.)$ such that for a given wealth z

$$k_1(z) = \sup_{X_T \in A(z)} \mathbb{E}\left[u\left(X_T - C_T\right)\right]$$

and

$$k_2(z) = \sup_{X_T \in A(z)} \mathbb{E}\left[u\left(X_T\right)\right].$$

To calculate explicitly $k_1(z)$, we first observe that

$$k_{1}(z) = \sup_{X_{T} \in A(z)} \mathbb{E} \left[\mathbb{E} \left[u \left(X_{T} - (K - S_{T})^{+} \mathbb{1}_{\tau > T} \right) | \tau \right] \right] \\ = \sup_{X_{T} \in A(z)} \mathbb{E} \left[p u \left(X_{T} - (K - S_{T})^{+} \right) + (1 - p) u \left(X_{T} \right) \right]$$

where $p = \mathbb{P}(\tau > T)$ and τ is independent of X_T and S_T .

Βοι

Example

Computation of *k*₁**: Pathwise Optimization**

We maximize pathwise. Let $\omega \in \Omega$, then define

$$\phi(x) = pu\left(x - (K - S_T(\omega))^+\right) + (1 - p)u(x) - \lambda\xi_T(\omega)x$$

It is obvious that $\phi''\leqslant 0$ and therefore that ϕ is concave and attains its maximum at x^* defined by

$$\phi'(x^*)=0.$$

For $\lambda > 0$ and for each $\omega \in \Omega$, define $X_T^*(\lambda, \omega) = x^*$. If there exists λ such that $\mathbb{E}[\xi_T X_T^*(\lambda)] = z$ then $X_T^*(\lambda)$ is an optimal solution and

$$k_1(z) = \mathbb{E}[u\left(X_T^* - (K - S_T)^+ \mathbb{1}_{\tau > T}\right)].$$

Illustration

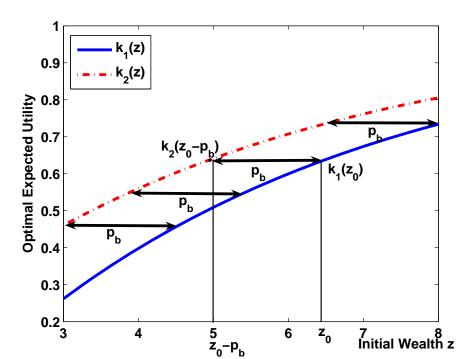
Next slide illustrates how to calculate explicitly bid prices. Recall that for a given wealth z

$$k_1(z) = \sup_{X_T \in A(z)} \mathbb{E} \left[u \left(X_T - C_T \right) \right]$$

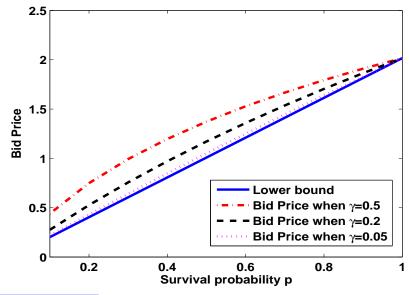
and

$$k_2(z) = \sup_{X_T \in A(z)} \mathbb{E}\left[u\left(X_T\right)\right].$$

Parameters are r = 2%, $\sigma = 0.2$, $\mu = 4\%$, $S_0 = 10$, T = 1, K = 12, $\gamma = 0.2$, p = 0.7.



Bid and ask prices with respect to survival probability p



Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions

Conclusion

- Market consistent pricing of insurance claims
- Preference-free bounds on prices of financial and insurance claims
- These bounds correspond to prices of some financial payoffs that we give explicitly
- These bounds are robust in the sense that they are derived under rather mild assumptions

- Bernard, C., Boyle P. 2010, "Explicit Representation of Cost-efficient Strategies", available on SSRN.
- Bernard, C., Maj, M., and Vanduffel, S., 2010. "Improving the Design of Financial Products in a Multidimensional Black-Scholes Market," NAAJ, forthcoming.
- Bühlman, H., 1980. "An economic premium principle", ASTIN Bulletin 11(1), 52–60.
- Carmona, R., 2008. "Indifference pricing: theory and applications", Princeton University Press.
- Cox, J.C., Leland, H., 1982. "On Dynamic Investment Strategies," Proceedings of the seminar on the Analysis of Security Prices, 26(2), U. of Chicago. (published in 2000 in JEDC, 24(11-12), 1859-1880.
- Dybvig, P., 1988a. "Distributional Analysis of Portfolio Choice," Journal of Business, 61(3), 369-393.
- Dybvig, P., 1988b. "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market," RFS.
- Goldstein, D.G., Johnson, E.J., Sharpe, W.F., 2008. "Choosing Outcomes versus Choosing Products: Consumer-focused Retirement Investment Advice," *Journal of Consumer Research*, 35(3), 440-456.
- Henderson, V., Hobson, D., 2004. "Utility Indifference Pricing An Overview". Volume on Indifference Pricing (ed. R. Carmona), Princeton University press.
- Vanduffel, S., Chernih, A., Maj, M., Schoutens, W. (2009), "On the Suboptimality of Path-dependent Pay-offs in Lévy markets", Applied Mathematical Finance, 16, no. 4, 315-330.
- Young, V., 2004. "Premium Calculation Principles". Encyclopedia of Actuarial Science, John Wiley, New York.

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions

Thanks!

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions

Additional Material

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions

Put option in Black and Scholes model

Assume a strike K. The payoff of the put is given by

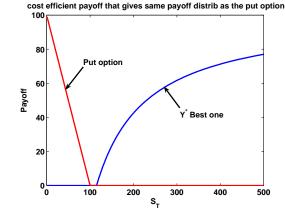
$$L_T = (K - S_T)^+$$
 .

The payoff that has the **lowest** cost and is distributed such as the put option is given by

$$Y_{T}^{\star} = F_{L}^{-1}\left(F_{S_{T}}\left(S_{T}\right)\right) = \left(K - \frac{S_{0}^{2}e^{2\left(\mu - \frac{\sigma^{2}}{2}\right)T}}{S_{T}}\right)^{+}$$

This type of power option "dominates" the put option.

Cost-efficient payoff of a put



With $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$, T = 1 year, K = 100. Distributional price of the put = 3.14 Price of the put = 5.57 Efficiency loss for the put = 5.57-3.14= 2.43

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
	_				
	Toy examp	le Equity-	Linked In	surance	

Simplest possible insurance claim that pays at time T = 1 a payoff C_1 distributed as a Bernoulli with parameter p = 0.001. $\mathbb{P}(C_1 = 1) = p$ and $\mathbb{P}(C_1 = 0) = 1 - p$.

3 cases:

First, the insurance claim C is linked to the death of a specific individual, then

$$\mathbb{E}[C_1|\xi_1] = \mathbb{E}[C_1].$$

Bid and ask prices p^{\bullet} satisfy

$$p^{\bullet} \geq \mathbb{E}[\xi_1 \mathbb{E}[C_1|\xi_1]] = e^{-r} \mathbb{E}[C_1] = e^{-r} \mathbb{P}(death).$$

Second, C_1 pays 1 if a designated person dies and the risky asset in the market is higher than a value H or equivalently $\{\xi_1 < L\} = \{S_1 > H\}$ and

$$\mathbb{E}[C_1|\xi_1] = \mathbb{E}[\mathbb{1}_{death}\mathbb{1}_{\xi_1 < L}|\xi_1]$$
$$= \mathbb{P}(death)\mathbb{1}_{\xi_1 < L}.$$

The market price of the claim $\mathbb{E}[C_1|\xi_1]$ is $e^{-r}.\mathbb{P}(death)\mathbb{Q}(S_1 > H)$ and thus bid and ask prices satisfy

$$p^{\bullet} \ge e^{-r}.\mathbb{P}(death)\mathbb{Q}(S_1 > H),$$

 $e^{-r}\mathbb{E}[C_1] = e^{-r}\mathbb{P}(death)\mathbb{P}(S_1 > H) > e^{-r}\mathbb{P}(death)\mathbb{Q}(S_1 > H).$ **Third**, C_1 pays 1 if a designated person dies and the risky asset in the market is lower than a value H. Then, $Cov(C_1, \xi_1) > 0$ and

 $p^{\bullet} \geq \mathbb{E}[\xi_1 \mathbb{E}[C_1 | \xi_1]] = \mathbb{P}(death).\mathbb{Q}(S_1 < H) > e^{-r} \mathbb{E}[C_1].$

Introduction	Cost-Efficiency	Example	Bounds	Example	Conclusions
	Corollary:	Ontimal I	nvectmen	$+(k\alpha)$	

Corollary

Denote by $V(\cdot)$ the objective function and given an initial wealth $w \in \mathbb{R}^+$ it holds that

$$\sup_{X_{\mathcal{T}}\in A(w)} V(X_{\mathcal{T}}) = \sup_{X_{\mathcal{T}}\in A_{\xi}(w)} V(X_{\mathcal{T}}),$$
(1)

where

- ► A(w) is the set of random wealths X_T that can be generated at maturity T > 0 with an initial wealth w,
- A_ξ(w) is the subset of random wealths that are almost surely anti-comonotonic with ξ_T (in other words which are almost surely a non-increasing function of ξ_T).