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I This talk is joint work with Phelim Boyle (Wilfrid Laurier
University, Waterloo, Canada) and with Steven Vanduffel
(Vrije Universiteit Brussel (VUB), Belgium).

I Outline of the talk:

1 Characterization of optimal investment strategies for an
investor with law-invariant preferences and a fixed
investment horizon

2 Optimal Design of Financial Products

3 Extension to the case when investors have state-dependent
constraints.
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Part I: Optimal portfolio selection for law-invariant investors

Characterization of optimal investment strategies for an investor
with law-invariant preferences and a fixed investment horizon

• Optimal strategies are “cost-efficient”.

• Cost-efficiency ⇔ Minimum correlation with the state-price
process ⇔ Anti-monotonicity

• Explicit representations of the cheapest and most expensive
strategies to achieve a given distribution.

• In the Black-Scholes setting,

I Optimality of strategies increasing in ST .
I Suboptimality of path-dependent contracts.
I How to improve structured products design.
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Main Assumptions

• Consider an arbitrage-free market.

• Given a strategy with payoff XT at time T . There exists Q,
such that its price at 0 is

c(XT ) = EQ [e−rTXT ]

• P (“physical measure”) and Q (“risk-neutral measure”) are
two equivalent probability measures:

ξT = e−rT
(

dQ

dP

)
T

, c(XT) =EQ [e−rTXT ] = EP[ξTXT].

We assume that all market participants agree on the
state-price process ξT .
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Cost-efficient strategies

A strategy (or a payoff) is cost-efficient

if any other strategy that generates the same distribution under P
costs at least as much.

• Given a strategy with payoff XT at time T and cdf F under
the physical measure P.

The distributional price is defined as

PD(F ) = min
{Y | Y∼F}

{E [ξTY ]} = min
{Y | Y∼F}

c(Y )

• The strategy with payoff XT is cost-efficient if

PD(F ) = c(XT )
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Simple Illustration

Example of

• XT ∼ YT under P

• but with different costs

in a 2-period binomial tree. (T = 2)
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A simple illustration for X2, a payoff at T = 2

Real-world probabilities: p = 1
2

and risk neutral probabilities=q = 1
4 .
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Y2, a payoff at T = 2 distributed as X2
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Traditional Approach to Portfolio Selection

Consider an investor with increasing law-invariant preferences
and a fixed horizon. Denote by XT the investor’s final wealth.

• Optimize a law-invariant objective function
1 max

XT

(EP[U(XT)]) where U is increasing.

2 Minimizing Value-at-Risk
3 Probability target maximizing: max

XT

P(XT > K)

4 ...

• for a given cost (budget)

cost at 0 = EQ [e−rTXT ] = EP [ξTXT ]

Find optimal strategy X ∗T ⇒ Optimal cdf F of X ∗T
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Our Approach

Consider an investor with

• Law-invariant preferences

• Increasing preferences

• A fixed investment horizon

The optimal strategy must be cost-efficient.

Therefore X ?
T in the previous slide is cost-efficient.

Our approach: We characterize cost-efficient strategies

(This characterization can then be used to solve optimal portfolio
problems by restricting the set of possible strategies).
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Sufficient Condition for Cost-efficiency

A subset A of R2 is anti-monotonic if

for any (x1, y1) and (x2, y2) ∈ A, (x1 − x2)(y1 − y2) 6 0.

A random pair (X ,Y ) is anti-monotonic if

there exists an anti-monotonic set A of R2 such that
P((X ,Y ) ∈ A) = 1.

Theorem (Sufficient condition for cost-efficiency)

Any random payoff XT with the property that (XT , ξT ) is
anti-monotonic is cost-efficient.

Note the absence of additional assumptions on ξT (it holds in discrete

and continuous markets) and on XT (no assumption on non-negativity).

Carole Bernard Optimal Investment with State-Dependent Constraints 14/52



Introduction Cost-Efficiency Examples Improve Design State-Dependent Constraints Conclusions

Explicit Representation for Cost-efficiency

Theorem

Consider the following optimization problem:

PD(F ) = min
{XT | XT∼F}

E[ξTXT ]

Assume ξT is continuously distributed, then the optimal
strategy is

X?T = F−1 (1− Fξ (ξT )) .

Note that X?T ∼ F and X?T is a.s. unique such that

PD(F ) = c(X?T ) = E[ξTX?T ]
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Copulas and Sklar’s theorem

The joint cdf of a couple (ξT ,X ) can be decomposed into 3
elements

• The marginal cdf of ξT : Fξ

• The marginal cdf of XT : F

• A copula C

such that
P(ξT 6 ξ,XT 6 x) = C (Fξ(ξ),F (x))
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Idea of the proof (1/2)

Solving this problem amounts to finding bounds on copulas!

min
XT

E [ξTXT ]

subject to

{
XT ∼ F
ξT ∼ Fξ

The distribution Fξ is known and depends on the financial market.
Let C denote a copula for (ξT ,X ).

E[ξTX ] =

∫ ∫
(1− Fξ(ξ)− F (x) + C (Fξ(ξ),F (x)))dxdξ, (1)

Bounds for E[ξTX ] are derived from bounds on C

max(u + v − 1, 0) 6 C (u, v) 6 min(u, v)

(Fréchet-Hoeffding Bounds for copulas)
Carole Bernard Optimal Investment with State-Dependent Constraints 17/52
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Idea of the proof (2/2)

Consider a strategy with payoff XT distributed as F . We define
F−1 as follows:

F−1(y) = min {x / F (x) > y} .

ξT is continuously distributed. Let U = Fξ(ξT ), then

E [F−1
ξ (U) F−1

X (1− U)] 6 E [F−1
ξ (U) X ] 6 E [F−1

ξ (U) F−1
X (U)]

In our setting, the cost of XT is c(XT ) = E [ξTXT ].

E [ξTF−1
X (1− Fξ(ξT ))] 6 c(XT ) 6 E [ξTF−1

X (Fξ(ξT ))]
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Maximum price = Least efficient payoff

Theorem

Consider the following optimization problem:

max
{XT | XT∼F}

E[ξTXT ]

Assume ξT is continuously distributed. The unique strategy Z?T
that generates the same distribution as F with the highest cost can
be described as follows:

Z?T = F−1 (Fξ (ξT ))
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Path-dependent payoffs are inefficient

Corollary

To be cost-efficient, the payoff of the derivative has to be of the
following form:

X?T = F−1 (1− Fξ (ξT ))

It becomes a European derivative written on ST when the
state-price process ξT can be expressed as a function of ST . Thus
path-dependent derivatives are in general not cost-efficient.

Corollary

Consider a derivative with a payoff XT which could be written as

XT = h(ξT )

Then XT is cost efficient if and only if h is non-increasing.
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Black-Scholes Model

Under the physical measure P,

dSt

St
= µdt + σdW P

t

Then

ξT = e−rT
(

dQ

dP

)
= a

(
ST

S0

)−b
where a = e

θ
σ

(µ−σ
2

2
)t−(r+ θ2

2
)t and b = µ−r

σ2 .

Theorem

To be cost-efficient, the contract has to be a European
derivative written on ST and non-decreasing w.r.t. ST (when
µ > r). In this case,

X?T = F−1 (FST (ST ))
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Geometric Asian contract in Black-Scholes model

Assume a strike K . The payoff of the Geometric Asian call is given
by

XT =
(

e
1
T

∫ T
0 ln(St)dt − K

)+

which corresponds in the discrete case to

((∏n
k=1 S kT

n

) 1
n − K

)+

.

The efficient payoff that is distributed as the payoff XT is a power
call option

X?T = d

(
S

1/
√

3
T − K

d

)+

where d := S
1− 1√

3

0 e

(
1
2
−
√

1
3

)(
µ−σ

2

2

)
T

.
Similar result in the discrete case.
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Example: Discrete Geometric Option
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o
ff

Y
T
*

Z
T
*

With σ = 20%, µ = 9%, r = 5%, S0 = 100, T = 1 year, K = 100, n = 12.

C(X?T ) = 5.77 < Price(geometric Asian) = 5.94 < C(Z?T ) = 9.03.
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Put option in Black-Scholes model

Assume a strike K . The payoff of the put is given by

LT = (K − ST )+ .

The payout that has the lowest cost and that has the same
distribution as the put option payoff is given by

Y ?T = F−1
L (FST (ST )) =

K − S2
0 e

2
(
µ−σ

2

2

)
T

ST

+

.

This type of power option “dominates” the put option.
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Cost-efficient payoff of a put

0 100 200 300 400 500
0

20

40

60

80

100

S
T

P
ay

o
ff

cost efficient payoff that gives same payoff distrib as the put option

Y* Best one

Put option

With σ = 20%, µ = 9%, r = 5%, S0 = 100, T = 1 year, K = 100.
Distributional price of the put = 3.14

Price of the put = 5.57
Efficiency loss for the put = 5.57-3.14= 2.43
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Up and Out Call option in Black and Scholes model

Assume a strike K and a barrier threshold H > K . Its payoff is
given by

LT = (ST − K )+
1max06t6T {St}6H

The payoff that has the lowest cost and is distributed such as the
barrier up and out call option is given by

Y ?T = F−1
L (1− Fξ (ξT ))

The payoff that has the highest cost and is distributed such as the
barrier up and out call option is given by

Z?T = F−1
L (Fξ (ξT ))

Carole Bernard Optimal Investment with State-Dependent Constraints 26/52
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Cost-efficient payoff of a Call up and out

With σ = 20%, µ = 9%,S0 = 100, T = 1 year, strike K = 100, H = 130
Distributional Price of the CUO = 9.7374

Price of CUO = Pcuo

Worse case = 13.8204
Efficiency loss for the CUO = Pcuo-9.7374
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Link with First Stochastic Dominance

Theorem

Consider a payoff XT with cdf F ,

1 Taking into account the initial cost of the derivative, the
cost-efficient payoff X?T of the payoff XT dominates XT in the
first order stochastic dominance sense :

XT − c(XT )erT ≺fsd X?T − PD(F )erT

2 The dominance is strict unless XT is a non-increasing function
of ξT .

Thus the result is true for any preferences that respect first
stochastic dominance.
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A Very Different Approach

Theorem

Any payoff XT which cannot be expressed as a function of the
state-price process ξT at time T is strictly dominated in the sense
of second-order stochastic dominance by

H?T = E [XT |σ(ξT )] = g(ξT ),

which is a function of ξT . Consequently in the Black and Scholes
framework, any strictly path-dependent payoff is dominated by a
path-independent payoff.

• Same cost.

• Different distribution.

Carole Bernard Optimal Investment with State-Dependent Constraints 29/52
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Example: the Lookback Option
Consider a lookback call option with strike K . The payoff on this

option is given by

LT =

(
max

06t6T
{St} − K

)+

.

The cost efficient payoff with the same distribution

Y ?T = F−1
L (FST (ST )) .

The payoff that has the highest cost and has the same distribution
as the payoff LT is given by Z?T = F−1

L (1− FST (ST )) .

Carole Bernard Optimal Investment with State-Dependent Constraints 30/52
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Example: the Lookback Option
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With
σ = 20%, µ = 9%, r = 5%S0 = 100, T = 1 year, K = 100.

Distributional Price of the lookback = 18.85

Price of the lookback call = 19.17
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Example: the Lookback Option
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σ = 20%, µ = 9%, r = 5%S0 = 100, T = 1 year, K = 100.

Comparison of the two payoffs
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Example: the Lookback Option
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With
σ = 20%, µ = 9%, r = 5%S0 = 100, T = 1 year, K = 100.

Comparison of the cdf of the two payoffs
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Explaining the Demand for Inefficient Payoffs

1 Other sources of uncertainty: Stochastic interest rates or
stochastic volatility

2 Transaction costs, frictions
3 Intermediary consumption.
4 Often we are looking at an isolated contract: the theory

applies to the complete portfolio.
5 State-dependent needs

• Background risk:

• Hedging a long position in the market index ST (background
risk) by purchasing a put option,

• the background risk can be path-dependent.

• Stochastic benchmark or other constraints: If the investor
wants to outperform a given (stochastic) benchmark Γ such
that:

P {ω ∈ Ω /WT (ω) > Γ(ω)} > α.

Carole Bernard Optimal Investment with State-Dependent Constraints 34/52
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Part 2:
Investment with State-Dependent Constraints

Problem considered so far

min
{XT | XT∼F}

E [ξTXT ] .

A payoff that solves this problem is cost-efficient.

New Problem
min

{YT | YT∼F , S}
E [ξTYT ] .

where S denotes a set of constraints. A payoff that solves this
problem is called a S−constrained cost-efficient payoff.

Carole Bernard Optimal Investment with State-Dependent Constraints 35/52



Introduction Cost-Efficiency Examples Improve Design State-Dependent Constraints Conclusions

Copulas and Sklar’s theorem

The joint cdf of a couple (ST ,X ) can be decomposed into 3
elements

• The marginal cdf of ST : G

• The marginal cdf of XT : F

• A copula C

such that
P(ST 6 s,XT 6 x) = C (G (s),F (x))
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How to formulate “state-dependent constraints”? (1/2)

YT and ST have given distributions.

I The investor wants to ensure a minimum when the market
falls

P(YT > 100 | ST < 95) = 0.8.

I This provides some additional information on the joint
distribution between YT and ST

P(ST < 95, YT > 100) = 0.2.

⇒ information on the joint distribution of (ξT ,YT ) in the
Black-Scholes framework.

I Note that P(ξT 6 x ,YT 6 y) = ϑ, in other words

C (a, b) = ϑ

where a = 1− FST (95), b = FST (100) and
ϑ = 0.2− FST (95) + FST (100).
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How to formulate “state-dependent constraints”? (2/2)

YT and ST have given distributions.

I YT is decreasing in ST when the stock ST falls below some
level (to justify the demand of a put option).

I YT is independent of ST when ST falls below some level.

All these constraints impose the strategy YT to pay out in given
states of the world.

Carole Bernard Optimal Investment with State-Dependent Constraints 38/52
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Formally

Goal: Find the cheapest possible payoff YT with the distribution
F and which satisfies additional constraints of the form

P(ξT 6 x ,YT 6 y) = Q(FξT (x),F (y)),

with x > 0, y ∈ R and Q a given feasible function (for example a
copula).

Each constraint gives information on the dependence between the
state-price ξT and YT and is, for a given function Q, determined
by the pair (FξT (x),F (y)).

Denote the finite or infinite set of all such constraints by S.
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Sufficient condition for the existence

Theorem

Let t ∈ (0,T ). If there exists a copula L satisfying S such that
L 6 C (pointwise) for all other copulas C satisfying S then the
payoff Y ?

T given by

Y ?
T = F−1(f (ξT , ξt))

is a S-constrained cost-efficient payoff. Here f (ξT , ξt) is given by

f (ξT , ξt) =
(
`F
ξT

(ξT )

)−1 [
jFξT (ξT )(Fξt (ξt))

]
,

where the functions ju(v) and `u(v) are defined as the first partial
derivative for (u, v)→ J(u, v) and (u, v)→ L(u, v) respectively
and where J denotes the copula for the random pair (ξT , ξt).

If (U,V ) has a copula L then `u(v) = P(V 6 v |U = u).
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Example 1: S = ∅ (no constraints)

From the Fréchet-Hoeffding bounds on copulas one has

∀(u, v) ∈ [0, 1]2, C (u, v) > max (0, u + v − 1) .

Note that L(u, v) := max (0, u + v − 1) is a copula.
Then one obtains `u(v) = 1 if v > 1− u and that `u(v) = 0 if
v < 1− u. Hence we find that `−1

u (p) = 1− u for all 0 < p 6 1
which implies that

f (ξt , ξT ) = 1− Fξ(ξT ).

It follows that Y ?
T is given by

Y ?
T = F−1 (1− Fξ (ξT ))
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Existence of the optimum ⇔ Existence of minimum copula

Theorem (Sufficient condition for existence of a minimal copula L)

Let S be a rectangle [u1, u2]× [v1, v2] ⊆ [0, 1]2. Then a minimal
copula L(u, v) satisfying S exists and is given by

L(u, v) = max {0, u + v − 1, K (u, v)} .

where K (u, v) = max(a,b)∈ S {Q(a, b)− (a− u)+ − (b − v)+}.

Proof in a note written with Xiao Jiang and Steven Vanduffel
extending Tankov’s result (JAP 2012).

Consequently the existence of a S−constrained cost-efficient
payoff is guaranteed when S is a rectangle. More generally it
also holds when S ⊆ [0, 1]2 satisfies a “monotonicity
property” of the upper and lower “boundaries” and

∀ (u, v0) , (u, v1) ∈ S,
(

u,
v0 + v1

2

)
∈ S. (2)
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Theorem (Case of one constraint)

Assume that there is only one constraint (a, b) in S and let
ϑ := Q(a, b), Then the minimum copula L is

L(u, v) = max
{

0, u + v − 1, ϑ− (a− u)+ − (b − v)+
}
.

The S−constrained cost-efficient payoff Y ?
T exists and is unique. It

can be expressed as

Y ?
T = F−1 (G (FξT (ξT ))) , (3)

where G : [0, 1]→ [0, 1] is defined as G (u) = `−1
u (1) and can be

written as

G (u) =


1− u if 0 6 u 6 a− ϑ,
a + b − ϑ− u if a− ϑ < u 6 a,
1 + ϑ− u if a < u 6 1 + ϑ− b,
1− u if 1 + ϑ− b < u 6 1.

(4)
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Example 2: S contains 1 constraint

Assume a Black-Scholes market. We suppose that the investor is
looking for the payoff YT such that YT ∼ F (where F is the cdf of
ST ) and satisfies the following constraint

P(ST < 95, YT > 100) = 0.2.

The optimal strategy, where a = 1− FST (95), b = FST (100) and
ϑ = 0.2− FST (95) + FST (100) is given by the previous theorem.

Its price is 100.2
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Example 2: Illustration

Minimum Copula Optimal Strategy
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Example 3: S is infinite

A cost-efficient strategy with the same distribution F as ST but
such that it is decreasing in ST when ST 6 ` is unique a.s. Its
payoff is equal to

Y ?
T = F−1 [G (F (ST ))] ,

where G : [0, 1]→ [0, 1] is given by

G (u) =

{
1− u if 0 6 u 6 F (`),
u − F (`) if F (`) < u 6 1.

The constrained cost-efficient payoff can be written as

Y ?
T := F−1 [(1− F (ST ))1ST<` + (F (ST )− F (`))1ST>`] .
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Y ?
T as a function of ST . Parameters: ` = 100, S0 = 100, µ = 0.05,

σ = 0.2, T = 1 and r = 0.03. The price is 103.4.
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Example 4: S is infinite

A cost-efficient strategy with the same distribution F as ST but
such that it is independent of ST when ST 6 ` can be constructed
as

Y ?
T = F−1

(
Φ (k(St ,ST ))1ST<` +

(
F (ST )− F (`)

1− F (`)

)
1ST>`

)
,

where k(St ,ST ) =
ln

(
St

S
t/T
T

)
−(1− t

T
) ln(S0)

σ

√
t− t2

T

and t ∈ (0,T ) can be

chosen freely (No uniqueness and path-independence
anymore).
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10,000 realizations of Y ?
T as a function of ST where ` = 100, S0 = 100,

µ = 0.05, σ = 0.2, T = 1, r = 0.03 and t = T/2. Its price is 101.1
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Conclusion

• Characterization of cost-efficient strategies.

• For a given investment strategy, we derive an explicit
analytical expression for the cheapest and the most expensive
strategies that have the same payoff distribution.

• Optimal investment choice under state-dependent constraints.

• How to improve the design of structured products?
Simple contracts are usually better!!!
In the presence of state-dependent constraints, optimal
strategies

• are not always non-decreasing with the stock price ST .
• are not anymore unique and could be path-dependent.
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Further Research Directions / Work in Progress

I Using cost-efficiency to derive bounds for insurance prices
derived from indifference utility pricing (“Bounds for Insurance
Prices” with Steven Vanduffel)

I Extension to the presence of stochastic interest rates and
application to executive compensation (work in progress with
Jit Seng Chen and Phelim Boyle).

I Further extend the work on state-dependent constraints:
1 Solve with expectations constraints between ξT and XT .

E[gi (ξT ,XT )] ∈ Ii

where Ii is an interval, possibly reduced to a single value.
2 Solve with the probability constraint of outperforming a

benchmark
P(XT > h(ST )) > ε

3 Extend the literature on optimal portfolio selection in specific
models under state-dependent constraints.

Do not hesitate to contact me to get updated working papers!
Carole Bernard Optimal Investment with State-Dependent Constraints 51/52



Introduction Cost-Efficiency Examples Improve Design State-Dependent Constraints Conclusions

References
I Bernard, C., Boyle P., Vanduffel S., 2011, “Explicit Representation of Cost-efficient Strategies”, available

on SSRN.

I Bernard, C., Jiang, X., Vanduffel, S., 2012. “Note on Improved Frechet bounds and model-free pricing of
multi-asset options”, Journal of Applied Probability.

I Bernard, C., Maj, M., Vanduffel, S., 2011. “Improving the Design of Financial Products in a
Multidimensional Black-Scholes Market,”, North American Actuarial Journal.

I Bernard, C., Vanduffel, S., 2011. “Optimal Investment under Probability Constraints,” AfMath
Proceedings.

I Bernard, C., Vanduffel, S., 2012. “Financial Bounds for Insurance Prices,”Journal of Risk & Insurance.

I Cox, J.C., Leland, H., 1982. “On Dynamic Investment Strategies,” Proceedings of the seminar on the
Analysis of Security Prices,(published in 2000 in JEDC).

I Dybvig, P., 1988a. “Distributional Analysis of Portfolio Choice,” Journal of Business.

I Dybvig, P., 1988b. “Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in
the Stock Market,” Review of Financial Studies.

I Goldstein, D.G., Johnson, E.J., Sharpe, W.F., 2008. “Choosing Outcomes versus Choosing Products:
Consumer-focused Retirement Investment Advice,” Journal of Consumer Research.

I Jin, H., Zhou, X.Y., 2008. “Behavioral Portfolio Selection in Continuous Time,” Mathematical Finance.

I Nelsen, R., 2006. “An Introduction to Copulas”, Second edition, Springer.

I Pelsser, A., Vorst, T., 1996. “Transaction Costs and Efficiency of Portfolio Strategies,” European Journal
of Operational Research.

I Tankov, P., 2011. “Improved Frechet bounds and model-free pricing of multi-asset options,” Journal of
Applied Probability, forthcoming.

I Vanduffel, S., Chernih, A., Maj, M., Schoutens, W. 2009. “On the Suboptimality of Path-dependent
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