Explicit Representation of Cost-Efficient Strategies

Carole Bernard

Waterloo Research Institute in Insurance, Securities & Quantitative Finance

SWUFE, March 2012.

Introduction

xamples

This talk is joint work with Phelim Boyle (Wilfrid Laurier University, Waterloo, Canada) and with Steven Vanduffel (Vrije Universiteit Brussel (VUB), Belgium).

Outline of the talk:

- Characterization of optimal investment strategies for an investor with law-invariant preferences and a fixed investment horizon
- Optimal Design of Financial Products
- Extension to the case when investors have state-dependent constraints.

Introduction

xamples

This talk is joint work with Phelim Boyle (Wilfrid Laurier University, Waterloo, Canada) and with Steven Vanduffel (Vrije Universiteit Brussel (VUB), Belgium).

Outline of the talk:

- Characterization of optimal investment strategies for an investor with law-invariant preferences and a fixed investment horizon
- Optimal Design of Financial Products
- Extension to the case when investors have state-dependent constraints.

Part I: Optimal portfolio selection for law-invariant investors

Characterization of optimal investment strategies for an investor with **law-invariant preferences** and a **fixed investment horizon**

- Optimal strategies are "cost-efficient".
- **Cost-efficiency** ⇔ Minimum correlation with the state-price process ⇔ Anti-monotonicity
- Explicit representations of the **cheapest** and **most expensive** strategies to achieve a given distribution.
- In the Black-Scholes setting,
 - Optimality of strategies increasing in S_T .
 - Suboptimality of path-dependent contracts.
 - How to *improve* structured products design.

Main Assumptions

- Consider an arbitrage-free market.
- Given a strategy with payoff X_T at time T. There exists Q, such that its price at 0 is

$$c(X_T) = \mathbb{E}_Q[e^{-rT}X_T]$$

• *P* ("physical measure") and *Q* ("risk-neutral measure") are two equivalent probability measures:

$$\xi_{T} = e^{-rT} \left(\frac{dQ}{dP} \right)_{T}, \quad \mathbf{c}(\mathbf{X}_{\mathsf{T}}) = \mathbb{E}_{Q}[e^{-rT}X_{T}] = \mathbb{E}_{\mathsf{P}}[\xi_{\mathsf{T}}\mathbf{X}_{\mathsf{T}}].$$

We assume that all market participants agree on the state-price process ξ_T .

Cost-efficient strategies

A strategy (or a payoff) is cost-efficient

if any other strategy that generates the same distribution under ${\it P}$ costs at least as much.

• Given a strategy with payoff X_T at time T and cdf F under the **physical measure** P.

The distributional price is defined as

$$PD(F) = \min_{\{Y \mid Y \sim F\}} \{\mathbb{E}[\xi_T Y]\} = \min_{\{Y \mid Y \sim F\}} c(Y)$$

• The strategy with payoff X_T is cost-efficient if

$$PD(F) = c(X_T)$$

Carole Bernard

Optimal Investment with State-Dependent Constraints 5/52

Cost-efficient strategies

A strategy (or a payoff) is cost-efficient

if any other strategy that generates the same distribution under P costs at least as much.

• Given a strategy with payoff X_T at time T and cdf F under the **physical measure** P.

The distributional price is defined as

$$PD(F) = \min_{\{Y \mid Y \sim F\}} \{\mathbb{E}[\xi_T Y]\} = \min_{\{Y \mid Y \sim F\}} c(Y)$$

• The strategy with payoff X_T is cost-efficient if

$$PD(F) = c(X_T)$$

Cost-efficient strategies

A strategy (or a payoff) is cost-efficient

if any other strategy that generates the same distribution under P costs at least as much.

• Given a strategy with payoff X_T at time T and cdf F under the **physical measure** P.

The distributional price is defined as

$$PD(F) = \min_{\{Y \mid Y \sim F\}} \{\mathbb{E}[\xi_T Y]\} = \min_{\{Y \mid Y \sim F\}} c(Y)$$

• The strategy with payoff X_T is cost-efficient if

$$PD(F) = c(X_T)$$

Carole Bernard

Optimal Investment with State-Dependent Constraints 5/52

Literature

- Cox, J.C., Leland, H., 1982. "On Dynamic Investment Strategies," *Proceedings of the seminar on the Analysis of Security Prices*, 26(2), U. of Chicago (published in 2000 in *JEDC*), 24(11-12), 1859-1880.
- Dybvig, P., 1988a. "Distributional Analysis of Portfolio Choice," *Journal of Business*, **61**(3), 369-393.
- Dybvig, P., 1988b. "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market," *Review of Financial Studies*, 1(1), 67-88.

Simple Illustration

Example of

- $X_T \sim Y_T$ under P
- but with different costs

in a 2-period binomial tree. (T = 2)

A simple illustration for X_2 , a payoff at T = 2

Real-world probabilities: $p = \frac{1}{2}$

Y_2 , a payoff at T = 2 distributed as X_2

Real-world probabilities:
$$p = \frac{1}{2}$$

 X_2 and Y_2 have the same distribution under the physical measure

X_2 , a payoff at T = 2

$$c(X_2) = \text{Price of } X_2 = \left(\frac{1}{16} + \frac{6}{16}2 + \frac{9}{16}3\right) = \frac{5}{2}$$

Carole Bernard

Optimal Investment with State-Dependent Constraints 10/52

Y_2 , a payoff at T = 2

Carole Bernard

Optimal Investment with State-Dependent Constraints 11/52

Traditional Approach to Portfolio Selection

Consider an investor with **increasing law-invariant** preferences and a **fixed** horizon. Denote by X_T the investor's final wealth.

- Optimize a law-invariant objective function
 - $\max_{\mathbf{X}_{\mathsf{T}}} (\mathbf{E}_{\mathsf{P}}[\mathbf{U}(\mathbf{X}_{\mathsf{T}})]) \text{ where } U \text{ is increasing.}$
 - Ø Minimizing Value-at-Risk
 - Solution Probability target maximizing: $\max_{X_T} P(X_T > K)$

4 ..

• for a given **cost** (budget)

cost at
$$0 = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T]$$

Find optimal strategy $X_T^* \Rightarrow$ Optimal cdf F of X_T^*

Traditional Approach to Portfolio Selection

Consider an investor with **increasing law-invariant** preferences and a **fixed** horizon. Denote by X_T the investor's final wealth.

- Optimize a law-invariant objective function

 - Ø Minimizing Value-at-Risk
 - Solution Probability target maximizing: $\max_{X_T} P(X_T > K)$

4 ..

• for a given **cost** (budget)

cost at
$$0 = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T]$$

Find optimal strategy $X_T^* \Rightarrow$ Optimal cdf *F* of X_T^*

State-Dependent Constraints

Conclusions

Our Approach

Consider an investor with

- Law-invariant preferences
- Increasing preferences
- A fixed investment horizon

The optimal strategy must be **cost-efficient**.

Therefore X_T^* in the previous slide is cost-efficient.

Our approach: We characterize cost-efficient strategies

(This characterization can then be used to solve optimal portfolio problems by restricting the set of possible strategies).

State-Dependent Constraints

Conclusions

Our Approach

Consider an investor with

- Law-invariant preferences
- Increasing preferences
- A fixed investment horizon

The optimal strategy must be cost-efficient.

Therefore X_T^{\star} in the previous slide is cost-efficient.

Our approach: We characterize cost-efficient strategies

(This characterization can then be used to solve optimal portfolio problems by restricting the set of possible strategies).

State-Dependent Constraints

Conclusions

Our Approach

Consider an investor with

- Law-invariant preferences
- Increasing preferences
- A fixed investment horizon

The optimal strategy must be **cost-efficient**.

Therefore X_T^{\star} in the previous slide is cost-efficient.

Our approach: We characterize cost-efficient strategies

(This characterization can then be used to solve optimal portfolio problems by restricting the set of possible strategies).

Sufficient Condition for Cost-efficiency

A subset A of \mathbb{R}^2 is anti-monotonic if

for any (x_1,y_1) and $(x_2,y_2) \in A$, $(x_1-x_2)(y_1-y_2) \leqslant 0$.

A random pair (X, Y) is anti-monotonic if

there exists an anti-monotonic set A of \mathbb{R}^2 such that $\mathbb{P}((X, Y) \in A) = 1$.

Theorem (Sufficient condition for cost-efficiency)

Any random payoff X_T with the property that (X_T, ξ_T) is anti-monotonic is cost-efficient.

Note the absence of additional assumptions on ξ_T (it holds in discrete and continuous markets) and on X_T (no assumption on non-negativity).

Explicit Representation for Cost-efficiency

Theorem

Consider the following optimization problem:

$$PD(F) = \min_{\{X_T \mid X_T \sim F\}} \mathbb{E}[\xi_T X_T]$$

Assume ξ_T is continuously distributed, then the optimal strategy is

$$X_T^{\star} = F^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right).$$

Note that $X_T^{\star} \sim F$ and X_T^{\star} is a.s. unique such that

$$PD(F) = c(X_T^{\star}) = \mathbb{E}[\xi_T X_T^{\star}]$$

Copulas and Sklar's theorem

The joint cdf of a couple (ξ_T, X) can be decomposed into 3 elements

- The marginal cdf of ξ_T : F_{ξ}
- The marginal cdf of X_T : F
- A copula C

such that

$$P(\xi_T \leq \xi, X_T \leq x) = C(F_{\xi}(\xi), F(x))$$

Idea of the proof (1/2)

Solving this problem amounts to finding bounds on copulas!

$$\begin{array}{l} \min_{X_{\mathcal{T}}} \mathbb{E}\left[\xi_{\mathcal{T}} X_{\mathcal{T}}\right] \\ \text{subject to} \quad \left\{ \begin{array}{l} X_{\mathcal{T}} \sim F \\ \xi_{\mathcal{T}} \sim F_{\xi} \end{array} \right. \end{aligned}$$

The distribution F_{ξ} is known and depends on the financial market. Let C denote a copula for (ξ_T, X) .

$$\mathbb{E}[\xi_T X] = \int \int (1 - F_{\xi}(\xi) - F(x) + C(F_{\xi}(\xi), F(x))) dx d\xi, \quad (1)$$

Bounds for $\mathbb{E}[\xi_T X]$ are derived from bounds on *C*

$$\max(u+v-1,0)\leqslant C(u,v)\leqslant\min(u,v)$$

(Fréchet-Hoeffding Bounds for copulas)

Carole Bernard

Optimal Investment with State-Dependent Constraints 17/52

Idea of the proof (2/2)

Consider a strategy with payoff X_T distributed as F. We define F^{-1} as follows:

$$F^{-1}(y) = \min \left\{ x \ / \ F(x) \geqslant y \right\}.$$

 ξ_T is continuously distributed. Let $U = F_{\xi}(\xi_T)$, then

$$E[F_{\xi}^{-1}(U) F_{X}^{-1}(1-U)] \leq E[F_{\xi}^{-1}(U) X] \leq E[F_{\xi}^{-1}(U) F_{X}^{-1}(U)]$$

In our setting, the cost of X_T is $c(X_T) = E[\xi_T X_T]$.

$$E[\xi_{\mathcal{T}}F_X^{-1}(1-F_{\xi}(\xi_{\mathcal{T}}))] \leqslant c(X_{\mathcal{T}}) \leqslant E[\xi_{\mathcal{T}}F_X^{-1}(F_{\xi}(\xi_{\mathcal{T}}))]$$

State-Dependent Constraints

Conclusions

Maximum price = Least efficient payoff

Theorem

Consider the following optimization problem:

$$\max_{\{X_{\mathcal{T}} \mid X_{\mathcal{T}} \sim F\}} \mathbb{E}[\xi_{\mathcal{T}} X_{\mathcal{T}}]$$

Assume ξ_T is continuously distributed. The unique strategy Z_T^* that generates the same distribution as F with the highest cost can be described as follows:

$$Z_T^{\star} = F^{-1}\left(F_{\xi}\left(\xi_T\right)\right)$$

Path-dependent payoffs are inefficient

Corollary

To be cost-efficient, the payoff of the derivative has to be of the following form:

$$X_T^{\star} = F^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right)$$

It becomes a European derivative written on S_T when the state-price process ξ_T can be expressed as a function of S_T . Thus path-dependent derivatives are in general not cost-efficient.

Corollary

Consider a derivative with a payoff X_T which could be written as

$$X_T = h(\xi_T)$$

Then X_T is cost efficient if and only if h is non-increasing.

Carole Bernard

Optimal Investment with State-Dependent Constraints 20/52

Black-Scholes Model

Under the physical measure P,

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t^P$$

Then

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP}\right) = a \left(\frac{S_T}{S_0}\right)^{-b}$$

where $a = e^{\frac{\theta}{\sigma}(\mu - \frac{\sigma^2}{2})t - (r + \frac{\theta^2}{2})t}$ and $b = \frac{\mu - r}{\sigma^2}$.

Theorem

To be cost-efficient, the contract has to be a European derivative written on S_T and non-decreasing w.r.t. S_T (when $\mu > r$). In this case,

$$X_T^{\star} = F^{-1}\left(F_{S_T}\left(S_T\right)\right)$$

Geometric Asian contract in Black-Scholes model

Assume a strike K. The payoff of the Geometric Asian call is given by

$$X_{\mathcal{T}} = \left(e^{rac{1}{T}\int_0^T \ln(S_t)dt} - K
ight)^+$$

which corresponds in the discrete case to $\left(\left(\prod_{k=1}^{n} S_{kT}\right)^{\frac{1}{n}} - K\right)^{+}$.

The efficient payoff that is distributed as the payoff X_T is a power call option

$$X_T^{\star} = d \left(S_T^{1/\sqrt{3}} - \frac{K}{d} \right)^+$$

where $d := S_0^{1-\frac{1}{\sqrt{3}}} e^{\left(\frac{1}{2}-\sqrt{\frac{1}{3}}\right)\left(\mu-\frac{\sigma^2}{2}\right)T}$. Similar result in the discrete case.

Example: Discrete Geometric Option

Put option in Black-Scholes model

Assume a strike K. The payoff of the put is given by

$$L_T = (K - S_T)^+$$
.

The payout that has the **lowest** cost and that has the same distribution as the put option payoff is given by

$$Y_{T}^{\star} = F_{L}^{-1}\left(F_{S_{T}}\left(S_{T}\right)\right) = \left(K - \frac{S_{0}^{2}e^{2\left(\mu - \frac{\sigma^{2}}{2}\right)T}}{S_{T}}\right)^{+}$$

This type of power option "dominates" the put option.

Cost-efficient payoff of a put

With $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$, T = 1 year, K = 100. Distributional price of the put = 3.14 Price of the put = 5.57 Efficiency loss for the put = 5.57-3.14= 2.43

Up and Out Call option in Black and Scholes model

Assume a strike K and a barrier threshold H > K. Its payoff is given by

$$L_T = (S_T - K)^+ \mathbb{1}_{\max_{0 \leqslant t \leqslant T} \{S_t\} \leqslant H}$$

The payoff that has the **lowest** cost and is distributed such as the barrier up and out call option is given by

$$Y_T^{\star} = F_L^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right)$$

The payoff that has the **highest** cost and is distributed such as the barrier up and out call option is given by

$$Z_T^{\star} = F_L^{-1}\left(F_{\xi}\left(\xi_T\right)\right)$$

Cost-efficient payoff of a Call up and out

With $\sigma = 20\%$, $\mu = 9\%$, $S_0 = 100$, T = 1 year, strike K = 100, H = 130Distributional Price of the CUO = 9.7374 Price of CUO = P_{cuo} Worse case = 13.8204 Efficiency loss for the CUO = P_{cuo} -9.7374

Carole Bernard

Optimal Investment with State-Dependent Constraints 27/52

Link with First Stochastic Dominance

Theorem

Consider a payoff X_T with cdf F,

Taking into account the initial cost of the derivative, the cost-efficient payoff X^{*}_T of the payoff X_T dominates X_T in the first order stochastic dominance sense :

$$X_T - c(X_T)e^{rT} \prec_{fsd} X_T^{\star} - P_D(F)e^{rT}$$

The dominance is strict unless X_T is a non-increasing function of ξ_T.

Thus the result is true for any preferences that respect first stochastic dominance.

A Very Different Approach

Theorem

Any payoff X_T which cannot be expressed as a function of the state-price process ξ_T at time T is strictly dominated in the sense of second-order stochastic dominance by

$$H_T^{\star} = E\left[X_T \mid \sigma(\xi_T)\right] = g(\xi_T),$$

which is a function of ξ_T . Consequently in the Black and Scholes framework, any strictly path-dependent payoff is dominated by a path-independent payoff.

- Same cost.
- Different distribution.

A Very Different Approach

Theorem

Any payoff X_T which cannot be expressed as a function of the state-price process ξ_T at time T is strictly dominated in the sense of second-order stochastic dominance by

 $H_T^{\star} = E\left[X_T \mid \sigma(\xi_T)\right] = g(\xi_T),$

which is a function of ξ_T . Consequently in the Black and Scholes framework, any strictly path-dependent payoff is dominated by a path-independent payoff.

- Same cost.
- Different distribution.

Example: the Lookback Option

Consider a lookback call option with strike K. The payoff on this option is given by

$$L_{\mathcal{T}} = \left(\max_{0\leqslant t\leqslant \mathcal{T}} \{S_t\} - \mathcal{K}\right)^+.$$

The cost efficient payoff with the same distribution

$$Y_T^{\star} = F_L^{-1}\left(F_{S_T}\left(S_T\right)\right).$$

The payoff that has the highest cost and has the same distribution as the payoff L_T is given by $Z_T^{\star} = F_L^{-1} \left(1 - F_{S_T}(S_T)\right)$.

Example: the Lookback Option

Introduction

Example: the Lookback Option

Example: the Lookback Option

Explaining the Demand for Inefficient Payoffs

- Other sources of uncertainty: Stochastic interest rates or stochastic volatility
- **2** Transaction costs, frictions
- Intermediary consumption.
- Often we are looking at an isolated contract: the theory applies to the complete portfolio.
- **State-dependent needs**
 - Background risk:
 - Hedging a long position in the market index S_T (background risk) by purchasing a put option,
 - the background risk can be path-dependent.
 - Stochastic benchmark or other constraints: If the investor wants to outperform a given (stochastic) benchmark Γ such that:

$$P\left\{\omega \in \Omega \mid W_T(\omega) > \Gamma(\omega)\right\} \ge \alpha.$$

Carole Bernard

Optimal Investment with State-Dependent Constraints 34/52

Introduction

Part 2: Investment with State-Dependent Constraints

Problem considered so far

$$\min_{\{X_{\mathcal{T}} \mid X_{\mathcal{T}} \sim F\}} \mathbb{E}\left[\xi_{\mathcal{T}} X_{\mathcal{T}}\right].$$

A payoff that solves this problem is **cost-efficient**.

New Problem

$$\min_{\{Y_{\mathcal{T}} \mid Y_{\mathcal{T}} \sim F, \, \mathbb{S}\}} \mathbb{E}\left[\xi_{\mathcal{T}} Y_{\mathcal{T}}\right].$$

where S denotes a set of constraints. A payoff that solves this problem is called a S-constrained cost-efficient payoff.

Copulas and Sklar's theorem

The joint cdf of a couple (S_T, X) can be decomposed into 3 elements

- The marginal cdf of S_T : G
- The marginal cdf of X_T : F
- A copula C

such that

$$P(S_T \leq s, X_T \leq x) = C(G(s), F(x))$$

How to formulate "state-dependent constraints"? (1/2)

 Y_T and S_T have given distributions.

► The investor wants to ensure a **minimum** when the market falls

$$\mathbb{P}(Y_T > 100 \mid S_T < 95) = 0.8.$$

► This provides some additional information on the joint distribution between Y_T and S_T

$$\mathbb{P}(S_T < 95, Y_T > 100) = 0.2.$$

 \Rightarrow information on the joint distribution of (ξ_T, Y_T) in the Black-Scholes framework.

▶ Note that $\mathbb{P}(\xi_T \leq x, Y_T \leq y) = \vartheta$, in other words

$$C(a,b) = \vartheta$$

where $a = 1 - F_{S_T}(95), b = F_{S_T}(100)$ and $\vartheta = 0.2 - F_{S_T}(95) + F_{S_T}(100)$.

Carole Bernard

Optimal Investment with State-Dependent Constraints 37/52

How to formulate "state-dependent constraints"? (2/2)

 Y_T and S_T have given distributions.

- Y_T is decreasing in S_T when the stock S_T falls below some level (to justify the demand of a put option).
- Y_T is **independent** of S_T when S_T falls below some level.

All these constraints impose the strategy Y_T to pay out in given states of the world.

Formally

Goal: Find the **cheapest** possible payoff Y_T with the distribution F and which **satisfies additional constraints** of the form

$$\mathbb{P}(\xi_{\mathcal{T}} \leqslant x, Y_{\mathcal{T}} \leqslant y) = Q(F_{\xi_{\mathcal{T}}}(x), F(y)),$$

with $x > 0, y \in \mathbb{R}$ and Q a given feasible function (for example a copula).

Each constraint gives information on the dependence between the state-price ξ_T and Y_T and is, for a given function Q, determined by the pair $(F_{\xi_T}(x), F(y))$.

Denote the finite or infinite set of all such constraints by S.

Sufficient condition for the existence

Theorem

Let $t \in (0, T)$. If there exists a copula L satisfying S such that $L \leq C$ (pointwise) for all other copulas C satisfying S then the payoff Y_T^* given by

$$Y_T^{\star} = F^{-1}(f(\xi_T, \xi_t))$$

is a S-constrained cost-efficient payoff. Here $f(\xi_T, \xi_t)$ is given by

$$f(\xi_{\mathcal{T}},\xi_t) = \left(\ell_{\mathcal{F}_{\xi_{\mathcal{T}}}}(\xi_{\mathcal{T}})\right)^{-1} \left[j_{\mathcal{F}_{\xi_{\mathcal{T}}}}(\xi_{\mathcal{T}})}(\mathcal{F}_{\xi_t}(\xi_t))\right],$$

where the functions $j_u(v)$ and $\ell_u(v)$ are defined as the first partial derivative for $(u, v) \rightarrow J(u, v)$ and $(u, v) \rightarrow L(u, v)$ respectively and where J denotes the copula for the random pair (ξ_T, ξ_t) .

If
$$(U, V)$$
 has a copula L then $\ell_u(v) = \mathbb{P}(V \leqslant v | U = u)$.

Example 1: $\mathbb{S} = \emptyset$ (no constraints)

From the Fréchet-Hoeffding bounds on copulas one has

$$orall (u,v)\in [0,1]^2, \quad C(u,v)\geqslant \max\left(0,\ u+v-1
ight).$$

Note that $L(u, v) := \max(0, u + v - 1)$ is a copula. Then one obtains $\ell_u(v) = 1$ if v > 1 - u and that $\ell_u(v) = 0$ if v < 1 - u. Hence we find that $\ell_u^{-1}(p) = 1 - u$ for all 0 which implies that

$$f(\xi_t,\xi_T)=1-F_{\xi}(\xi_T).$$

It follows that Y_T^{\star} is given by

$$Y_{T}^{\star}=F^{-1}\left(1-F_{\xi}\left(\xi_{T}\right)\right)$$

Existence of the optimum \Leftrightarrow Existence of minimum copula

Theorem (Sufficient condition for existence of a minimal copula *L*)

Let S be a rectangle $[u_1, u_2] \times [v_1, v_2] \subseteq [0, 1]^2$. Then a minimal copula L(u, v) satisfying S exists and is given by

$$L(u, v) = \max \{0, u + v - 1, K(u, v)\}.$$

where
$$K(u, v) = \max_{(a,b) \in S} \{Q(a,b) - (a-u)^+ - (b-v)^+\}.$$

Proof in a note written with Xiao Jiang and Steven Vanduffel extending Tankov's result (JAP 2012).

Consequently the existence of a S-constrained cost-efficient payoff is guaranteed when S is a rectangle. More generally it also holds when $S \subseteq [0,1]^2$ satisfies a "monotonicity property" of the upper and lower "boundaries" and

$$\forall (u, v_0), (u, v_1) \in \mathcal{S}, \ \left(u, \frac{v_0 + v_1}{2}\right) \in \mathcal{S}.$$
(2)

Carole Bernard

Optimal Investment with State-Dependent Constraints 42/52

Examples

Improve Design

Theorem (Case of one constraint)

Assume that there is only one constraint (a, b) in S and let $\vartheta := Q(a, b)$, Then the minimum copula L is

$$L(u, v) = \max \left\{ 0, \ u + v - 1, \ artheta - (a - u)^+ - (b - v)^+
ight\}.$$

The $\mathbb{S}-constrained$ cost-efficient payoff Y_T^\star exists and is unique. It can be expressed as

$$Y_{T}^{\star} = F^{-1} \left(G(F_{\xi_{T}}(\xi_{T})) \right),$$
(3)

where $G : [0,1] \rightarrow [0,1]$ is defined as $G(u) = \ell_u^{-1}(1)$ and can be written as

$$G(u) = \begin{cases} 1-u & \text{if } 0 \leq u \leq a - \vartheta, \\ a+b-\vartheta-u & \text{if } a - \vartheta < u \leq a, \\ 1+\vartheta-u & \text{if } a < u \leq 1+\vartheta-b, \\ 1-u & \text{if } 1+\vartheta-b < u \leq 1. \end{cases}$$
(4)

Example 2: S contains 1 constraint

Assume a Black-Scholes market. We suppose that the investor is looking for the payoff Y_T such that $Y_T \sim F$ (where F is the cdf of S_T) and satisfies the following constraint

$$\mathbb{P}(S_T < 95, Y_T > 100) = 0.2.$$

The optimal strategy, where $a = 1 - F_{S_T}(95)$, $b = F_{S_T}(100)$ and $\vartheta = 0.2 - F_{S_T}(95) + F_{S_T}(100)$ is given by the previous theorem. Its price is 100.2 Introduction

Example 2: Illustration

Example 3: \mathbb{S} is infinite

A cost-efficient strategy with the same distribution F as S_T but such that it is decreasing in S_T when $S_T \leq \ell$ is unique a.s. Its payoff is equal to

$$Y_T^{\star} = F^{-1}\left[G(F(S_T))\right],$$

where $G:[0,1] \rightarrow [0,1]$ is given by

$$G(u) = \begin{cases} 1-u & \text{if } 0 \leq u \leq F(\ell), \\ u-F(\ell) & \text{if } F(\ell) < u \leq 1. \end{cases}$$

The constrained cost-efficient payoff can be written as

$$Y_T^{\star} := F^{-1}\left[(1 - F(S_T)) \mathbb{1}_{S_T < \ell} + \left(F(S_T) - F(\ell) \right) \mathbb{1}_{S_T \geqslant \ell} \right].$$

 Y_T^{\star} as a function of S_T . Parameters: $\ell = 100$, $S_0 = 100$, $\mu = 0.05$, $\sigma = 0.2$, T = 1 and r = 0.03. The price is 103.4.

Carole Bernard

Optimal Investment with State-Dependent Constraints 47/52

Introduction

Improve Design

Example 4: S is infinite

A cost-efficient strategy with the same distribution F as S_T but such that it is independent of S_T when $S_T \leq \ell$ can be constructed as

$$Y_T^{\star} = F^{-1}\left(\Phi\left(k(S_t, S_T)\right)\mathbb{1}_{S_T < \ell} + \left(\frac{F(S_T) - F(\ell)}{1 - F(\ell)}\right)\mathbb{1}_{S_T \ge \ell}\right),$$

where $k(S_t, S_T) = \frac{\prod \left(\frac{\overline{s_T^{T}}}{\sigma_T}\right)^{-(1-\overline{T}) \prod (S_0)}}{\sigma_{\sqrt{t-\frac{t^2}{T}}}}$ and $t \in (0, T)$ can be chosen freely (No uniqueness and path-independence anymore).

10,000 realizations of Y_T^{\star} as a function of S_T where $\ell = 100, S_0 = 100,$ $\mu=$ 0.05, $\sigma=$ 0.2, T= 1, r= 0.03 and t= T/2. Its price is 101.1

Carole Bernard

Optimal Investment with State-Dependent Constraints

Conclusion

- Characterization of cost-efficient strategies.
- For a given investment strategy, we derive an explicit analytical expression for the cheapest and the most expensive strategies that have the same payoff distribution.
- Optimal investment choice under state-dependent constraints.
- How to improve the design of structured products? Simple contracts are usually better!!! In the presence of state-dependent constraints, optimal strategies
 - are not always non-decreasing with the stock price S_T .
 - are not anymore unique and could be path-dependent.

Further Research Directions / Work in Progress

- Using cost-efficiency to derive bounds for insurance prices derived from indifference utility pricing ("Bounds for Insurance Prices" with Steven Vanduffel)
- Extension to the presence of stochastic interest rates and application to executive compensation (work in progress with Jit Seng Chen and Phelim Boyle).
- ▶ Further extend the work on state-dependent constraints:
 - **(1)** Solve with **expectations constraints** between ξ_T and X_T .

 $\mathbb{E}[g_i(\xi_T, X_T)] \in I_i$

where I_i is an interval, possibly reduced to a single value.

 $\mathbb{P}(X_T > h(S_T)) \geq \varepsilon$

Extend the literature on optimal portfolio selection in specific models under state-dependent constraints.

Do not hesitate to contact me to get updated working papers!

Carole Bernard

Optimal Investment with State-Dependent Constraints 51/52

References

- Bernard, C., Boyle P., Vanduffel S., 2011, "Explicit Representation of Cost-efficient Strategies", available on SSRN.
- Bernard, C., Jiang, X., Vanduffel, S., 2012. "Note on Improved Frechet bounds and model-free pricing of multi-asset options", *Journal of Applied Probability*.
- Bernard, C., Maj, M., Vanduffel, S., 2011. "Improving the Design of Financial Products in a Multidimensional Black-Scholes Market,", North American Actuarial Journal.
- Bernard, C., Vanduffel, S., 2011. "Optimal Investment under Probability Constraints," AfMath Proceedings.
- ▶ Bernard, C., Vanduffel, S., 2012. "Financial Bounds for Insurance Prices," Journal of Risk & Insurance.
- Cox, J.C., Leland, H., 1982. "On Dynamic Investment Strategies," Proceedings of the seminar on the Analysis of Security Prices, (published in 2000 in JEDC).
- Dybvig, P., 1988a. "Distributional Analysis of Portfolio Choice," Journal of Business.
- Dybvig, P., 1988b. "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market," *Review of Financial Studies*.
- Goldstein, D.G., Johnson, E.J., Sharpe, W.F., 2008. "Choosing Outcomes versus Choosing Products: Consumer-focused Retirement Investment Advice," *Journal of Consumer Research*.
- ▶ Jin, H., Zhou, X.Y., 2008. "Behavioral Portfolio Selection in Continuous Time," Mathematical Finance.
- ▶ Nelsen, R., 2006. "An Introduction to Copulas", Second edition, Springer.
- Pelsser, A., Vorst, T., 1996. "Transaction Costs and Efficiency of Portfolio Strategies," European Journal of Operational Research.
- Tankov, P., 2011. "Improved Frechet bounds and model-free pricing of multi-asset options," Journal of Applied Probability, forthcoming.
- Vanduffel, S., Chernih, A., Maj, M., Schoutens, W. 2009. "On the Suboptimality of Path-dependent Pay-offs in Lévy markets", Applied Mathematical Finance.

$\sim \sim \sim$