Explicit Representation of Cost Efficient Strategies

Suboptimality of Path-dependent Strategies

Carole Bernard (University of Waterloo) & Phelim Boyle (Wilfrid Laurier University)

Introduction

Motivation / Context

- Starting point: work on popular US retail investment products. How to explain the demand for complex path-dependent contracts?
- ▶ Met with Phil Dybvig at the NFA in Sept. 2008.
- Path-dependent contracts are not "efficient" (JoB 1988, "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market" in RFS 1988).

Introduction Cost-Efficiency Main result Examples Preferences Lin

Motivation / Context

- Starting point: work on popular US retail investment products. How to explain the demand for complex path-dependent contracts?
- ▶ Met with Phil Dybvig at the NFA in Sept. 2008.
- Path-dependent contracts are not "efficient" (JoB 1988, "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market" in RFS 1988).

Introduction Cost-Efficiency Main result Examples Preferences Lin

Motivation / Context

- Starting point: work on popular US retail investment products. How to explain the demand for complex path-dependent contracts?
- ▶ Met with Phil Dybvig at the NFA in Sept. 2008.
- Path-dependent contracts are not "efficient" (JoB 1988, "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market" in RFS 1988).

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Some Assumptions

- Consider an arbitrage-free and complete market.
- Given a strategy with payoff X_T at time T. There exists Q, such that its price at 0 is

$$P_X = E_Q[e^{-rT}X_T]$$

• *P* ("physical measure") and *Q* ("risk-neutral measure") are two equivalent probability measures:

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP} \right)_T, \quad P_X = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T].$$

Motivation: Traditional Approach to Portfolio Selection

Investors have a strategy that will give them a final wealth X_T . This strategy depends on the financial market and is random.

• They want to maximize the **expected utility** of their final wealth X_T

$$\max_{X_T} (E_P[U(X_T)])$$

U: utility (increasing because individuals prefer more to less).

• They want to minimize the cost of the strategy

cost at
$$0 = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T]$$

Find optimal payoff $X_T \Rightarrow$ Optimal cdf F of X_T

Motivation: Traditional Approach to Portfolio Selection

Investors have a strategy that will give them a final wealth X_T . This strategy depends on the financial market and is random.

• They want to maximize the **expected utility** of their final wealth X_T

$$\max_{X_T} (E_P[U(X_T)])$$

U: utility (increasing because individuals prefer more to less).

• They want to minimize the cost of the strategy

cost at
$$0 = E_Q[e^{-rT}X_T] = E_P[\xi_T X_T]$$

Find optimal payoff $X_T \Rightarrow$ Optimal cdf F of X_T

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Our Approach

- Given the cdf F that the investor would like for his final wealth
- We give an explicit representation of the payoff X_T such that
 - \blacktriangleright $X_T \sim F$ in the real world
 - \triangleright X_T corresponds to the cheapest strategy

Introduction Cost-Efficiency Main result Examples Preferences Limits

Outline of the presentation

- What is cost-efficiency?
- ▶ Path-dependent strategies/payoffs are not cost-efficient.
- Explicit construction of efficient strategies.
- Investors (with a fixed horizon and law-invariant preferences) should prefer to invest in path-independent payoffs: path-dependent exotic derivatives are usually not optimal!
- **•** Examples: the put option and the geometric Asian option.

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Efficiency Cost

Dybvig (RFS 1988) explains how to compare two strategies by analyzing their respective efficiency cost.

What is the "efficiency cost"?

It is a criteria for evaluating payoffs independent of the agents' preferences.

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Efficiency Cost

 Given a strategy with payoff X_T at time T, and initial price at time 0

$$P_X = E_P \left[\xi_T X_T \right]$$

• $F : X_T$'s distribution under the **physical measure** P.

The distributional price is defined as

$$PD(F) = \min_{\{Y_T \mid Y_T \sim F\}} \{E_P[\xi_T Y_T]\}$$

The "loss of efficiency" or "efficiency cost" is equal to: $P_X - PD(F)$

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

A Simple Illustration

Let's illustrate what the "efficiency cost" is with a simple example. Consider :

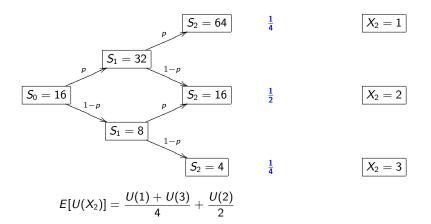
- A market with 2 assets: a bond and a stock S.
- A discrete 2-period binomial model for the stock S.
- A strategy with payoff X_T at the end of the two periods.
- An expected utility maximizer with utility function U.

Introduction

Cost-Efficiency

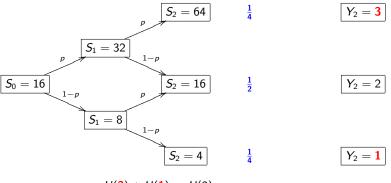
Limits

A simple illustration for X_2 , a payoff at T = 2Real-world probabilities= $p = \frac{1}{2}$



Y_2 , a payoff at T = 2 distributed as X_2

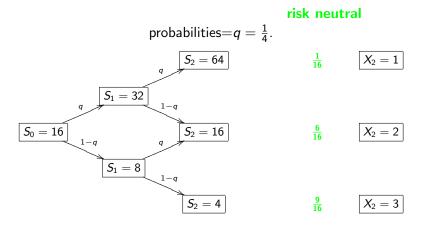
Real-world probabilities= $p = \frac{1}{2}$



$$E[U(Y_2)] = \frac{U(3) + U(1)}{4} + \frac{U(2)}{2}$$

(X and Y have the same distribution under the physical measure and thus the same utility)

X_2 , a payoff at T = 2

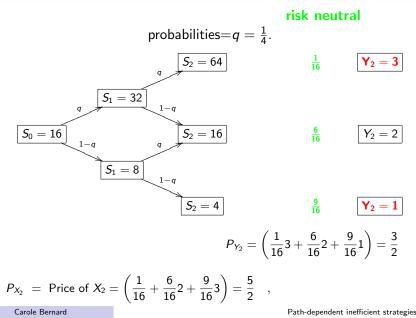


$$P_{X_2}$$
 = Price of $X_2 = \left(\frac{1}{16} + \frac{6}{16}2 + \frac{9}{16}3\right) = \frac{5}{2}$

Carole Bernard

Path-dependent inefficient strategies 12

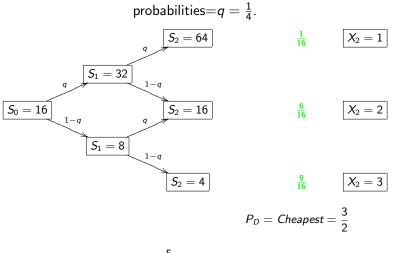
Y_2 , a payoff at T = 2



13

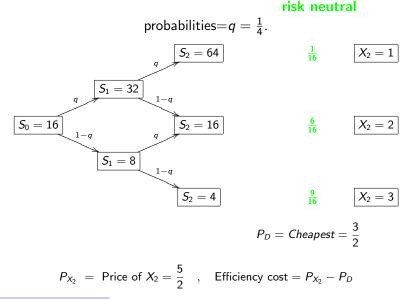
risk neutral

A simple illustration for X_2 , a payoff at T = 2

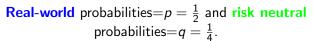


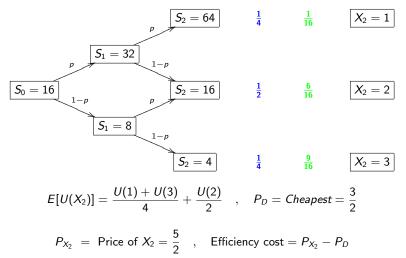
Limits

A simple illustration for X_2 , a payoff at T = 2



A simple illustration for X_2 , a payoff at T = 2





Cost-efficiency

 The cost of a strategy (or of a financial investment contract) with terminal payoff X_T is given by:

$$c(X_T) = E[\xi_T X_T]$$

• The "distributional price" of a cdf F is defined as

$$PD(F) = \min_{\{Y \mid Y \sim F\}} \{c(Y)\}$$

where $\{Y \mid Y \sim F\}$ is the set of r.v. distributed as X_T is.

We want to find the strategy that realizes this minimum.

Minimum Cost-efficiency

Given a payoff X_T with cdf F. We define its inverse F^{-1} as follows:

$$F^{-1}(y) = \min \{x / F(x) \ge y\}.$$

Theorem

Define

$$X_T^{\star} = F^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right)$$

then $X_T^{\star} \sim F$ and X_T^{\star} is a.s. unique such that

$$PD(F) = c(X_T^{\star})$$

Consider a strategy with payoff X_T distributed as F. The cost of this strategy satisfies:

$$P_D(F) \leq c(X_T) \leq E[\xi_T F^{-1}(F_{\xi}(\xi_T))] = \int_0^1 F_{\xi}^{-1}(v) F^{-1}(v) dv$$

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits
	Th	e least efficie	ent payoff		

Theorem

Let F be a cdf such that F(0) = 0. Consider the following optimization problem:

$$\max_{\{Z \mid Z \sim F\}} \{c(Z)\}$$

The strategy Z_T^* that generates the same distribution as F with the highest cost can be described as follows:

$$Z_T^{\star} = F^{-1}\left(F_{\xi}\left(\xi_T\right)\right)$$

One needs

lt

$$E[\xi_{T}F_{X}^{-1}(1-F_{\xi}(\xi_{T}))] \leq E[\xi_{T}X_{T}] \leq E[\xi_{T}F_{X}^{-1}(F_{\xi}(\xi_{T}))]$$

comes from the following property. Let $Z = F_{Z}^{-1}(U)$, then

 $E[F_Z^{-1}(U)F_X^{-1}(1-U)] \leq E[F_Z^{-1}(U)X] \leq E[F_Z^{-1}(U)F_X^{-1}(U)]$

Path-dependent payoffs are inefficient

Corollary

To be cost-efficient, the payoff of the derivative has to be of the following form:

$$X_T^{\star} = F^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right)$$

It becomes a European derivative written on S_T as soon as the state-price process ξ_T can be expressed as a function of S_T . Thus path-dependent derivatives are in general not cost-efficient.

Corollary

Consider a derivative with a payoff X_T which could be written as

$$X_T = h(\xi_T)$$

Then X_T is cost efficient if and only if h is non-increasing.

Limits

Black and Scholes Model

Under the physical measure P,

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t^P$$

Under the risk neutral measure Q,

$$\frac{dS_t}{S_t} = rdt + \sigma dW_t^Q$$

 S_t has a lognormal distribution.

$$\xi_T = e^{-rT} \left(\frac{dQ}{dP}\right)_T = e^{-rT} a \left(\frac{S_T}{S_0}\right)^{-b}$$

where $a = \exp\left(\frac{1}{2}Tb(r+\mu-\sigma^2)-rT\right)b = \frac{\mu-r}{\sigma^2}$.

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Black and Scholes Model

Any path-dependent financial derivative is inefficient. Indeed

$$\xi_{T} = e^{-rT} \left(\frac{dQ}{dP} \right)_{T} = e^{-rT} a \left(\frac{S_{T}}{S_{0}} \right)^{-b}$$

where $a = \exp\left(\frac{1}{2}Tb(r + \mu - \sigma^2) - rT\right)b = \frac{\mu - r}{\sigma^2}$. To be cost-efficient, the payoff has to be written as

$$X^{\star} = F^{-1} \left(1 - F_{\xi} \left(a \left(\frac{S_T}{S_0} \right)^{-b} \right) \right)$$

It is a European derivative written on the stock S_T (and the payoff is increasing with S_T when $\mu > r$).

Put option in Black and Scholes model

Assume a strike K. The payoff of the put is given by

$$L_T = (K - S_T)^+ \, .$$

The payoff that has the **lowest** cost and is distributed such as the put option is given by

$$Y_T^{\star} = F_L^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right).$$

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Put option in Black and Scholes model

Assume a strike K. The payoff of the put is given by

$$L_T = (K - S_T)^+ \, .$$

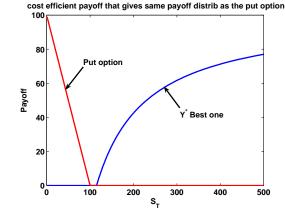
The cost-efficient payoff that will give the same distribution as a put option is

$$Y_T^{\star} = \left(K - \frac{S_0^2 e^{2\left(\mu - \frac{\sigma^2}{2}\right)T}}{S_T} \right)^+$$

This type of power option "dominates" the put option.

Limits

Cost-efficient payoff of a put



With $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$, T = 1 year, K = 100. Distributional price of the put = 3.14 Price of the put = 5.57 Efficiency loss for the put = 5.57-3.14= 2.43

Geometric Asian contract in Black and Scholes model

Assume a strike K. The payoff of the Gemoetric Asian call is given by

$$G_T = \left(e^{rac{1}{T}\int_0^T \ln(S_t)dt} - K
ight)^+$$

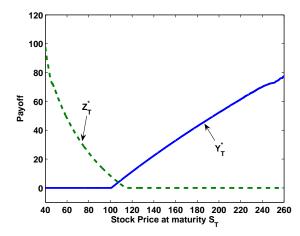
which corresponds in the discrete case to $\left(\left(\prod_{k=1}^{n} S_{\frac{kT}{n}}\right)^{\frac{1}{n}} - K\right)^{\prime}$. The efficient payoff that is distributed as the payoff G_{T} is given by

$$G_T^{\star} = d \left(S_T^{1/\sqrt{3}} - \frac{K}{d} \right)^+$$

where $d := S_0^{1-\frac{1}{\sqrt{3}}} e^{\left(\frac{1}{2}-\sqrt{\frac{1}{3}}\right)\left(\mu-\frac{\sigma^2}{2}\right)T}$. This payoff G_T^{\star} is a power call option. If $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$. The price of this geometric Asian option is 5.94. The payoff G_T^{\star} costs only 5.77. Similar result in the discrete case.

Limits

Example: the discrete Geometric option



With $\sigma = 20\%$, $\mu = 9\%$, r = 5%, $S_0 = 100$, T = 1 year, K = 100, n = 12. Price of the geometric Asian option = 5.94. The distributional price is 5.77. The least-efficient payoff Z_T^{\star} costs 9.03.

Utility Independent Criteria

Denote by

- X_T the final wealth of the investor,
- V(X_T) the objective function of the agent,

Assumptions

- Agents' preferences depend only on the probability distribution of terminal wealth: "law-invariant" preferences. (if X_T ~ Z_T then: V(X_T) = V(Z_T).)
- **2** Agents prefer "more to less": if c is a non-negative random variable $V(X_T + c) \ge V(X_T)$.
- The market is perfectly liquid, no taxes, no transaction costs, no trading constraints (in particular short-selling is allowed).
- The market is arbitrage-free and complete.

For any inefficient payoff, there exists another strategy that these agents will prefer.

Utility Independent Criteria

Denote by

- X_T the final wealth of the investor,
- V(X_T) the objective function of the agent,

Assumptions

- Agents' preferences depend only on the probability distribution of terminal wealth: "law-invariant" preferences. (if X_T ~ Z_T then: V(X_T) = V(Z_T).)
- **2** Agents prefer "more to less": if c is a non-negative random variable $V(X_T + c) \ge V(X_T)$.
- The market is perfectly liquid, no taxes, no transaction costs, no trading constraints (in particular short-selling is allowed).
- The market is arbitrage-free and complete.

For any inefficient payoff, there exists another strategy that these agents will prefer.

Link with First Stochastic Dominance

Theorem

Consider a payoff X_T with cdf F,

Taking into account the initial cost of the derivative, the cost-efficient payoff X^{*}_T of the payoff X_T dominates X_T in the first order stochastic dominance sense :

$$X_T - c(X_T)e^{rT} \prec_{fsd} X_T^{\star} - P_D(F)e^{rT}$$

The dominance is strict unless X_T is a non-increasing function of ξ_T.

Thus the result is true for any preferences that respect first stochastic dominance.

Introduction

Limits

A Very Different Approach

Theorem

Any payoff X_T which cannot be expressed as a function of the state-price process ξ_T at time T is strictly dominated in the sense of second-order stochastic dominance by

 $H_T^{\star} = E\left[X_T \mid \sigma(\xi_T)\right] = g(\xi_T),$

which is a function of ξ_T . Consequently in the Black and Scholes framework, any strictly path-dependent payoff is dominated by a path-independent payoff.

- Same cost.
- Different distribution.

Introduction

Limits

A Very Different Approach

Theorem

Any payoff X_T which cannot be expressed as a function of the state-price process ξ_T at time T is strictly dominated in the sense of second-order stochastic dominance by

 $H_T^{\star} = E\left[X_T \mid \sigma(\xi_T)\right] = g(\xi_T),$

which is a function of ξ_T . Consequently in the Black and Scholes framework, any strictly path-dependent payoff is dominated by a path-independent payoff.

- Same cost.
- Different distribution.

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Example: the Lookback Option

Consider a lookback call option with strike K. The payoff on this option is given by

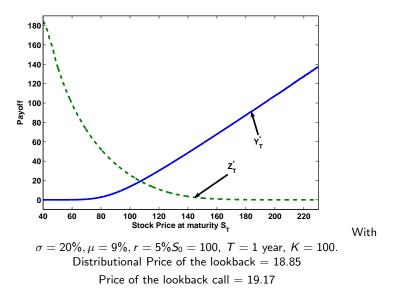
$$L_{\mathcal{T}} = \left(\max_{0\leqslant t\leqslant \mathcal{T}} \{S_t\} - \mathcal{K}\right)^+.$$

The cost efficient payoff with the same distribution

$$Y_T^{\star} = F_L^{-1} \left(1 - F_{\xi} \left(\xi_T \right) \right).$$

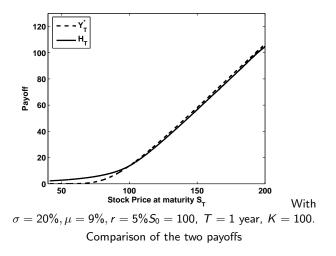
The payoff that has the highest cost and has the same distribution as the payoff L_T is given by $Z_T^* = F_L^{-1}(F_{\xi}(\xi_T))$.

Example: the Lookback Option



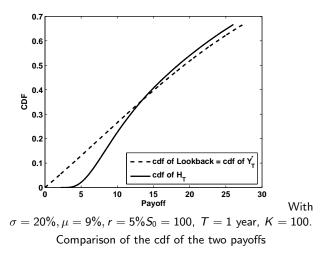
Limits

Example: the Lookback Option



Limits

Example: the Lookback Option



Explaining the Demand for Inefficient Payoffs

- State-dependent needs
 - Background risk:
 - Hedging a long position in the market index S_T (background risk) by purchasing a put option P_T ,
 - the background risk can be path-dependent.
 - Stochastic benchmark or other constraints: If the investor wants to outperform a given (stochastic) benchmark Γ such that:

$$P\left\{\omega \in \Omega \mid W_T(\omega) > \Gamma(\omega)\right\} \ge \alpha.$$

- Intermediary consumption.
- Other sources of uncertainty: the state-price process is not always a monotonic function of S_T (non-Markovian interest rates for instance)
- Transaction costs, frictions: Preference for an available inefficient contract rather than a cost-efficient payoff that one needs to replicate.

Introduction	Cost-Efficiency	Main result	Examples	Preferences	Limits

Conclusion

- A preference free framework for ranking different investment strategies.
- For a given investment strategy, we derive an explicit analytical expression
 - I for the cheapest strategy that has the same payoff distribution.
 - If or the most expensive strategy that has the same payoff distribution.
- There are strong connections between this approach and stochastic dominance rankings.

This may be useful for improving the design of financial products.

References

- Bernard, C., Maj, M., and Vanduffel, S., 2010. "Improving the Design of Financial Products in a Multidimensional Black-Scholes Market," NAAJ, forthcoming.
- Cambanis S., Simons J. and Stout W. 1976. "Inequalities for *Ek(X, Y)* when the marginals are fixed". Z. Wahrscheinlichkeitstheorie Verw. Geb., 36:285-294.
- Cox, J.C., Leland, H., 1982. "On Dynamic Investment Strategies," Proceedings of the seminar on the Analysis of Security Prices, 26(2), University of Chicago. (published in 2000 in Journal of Economic Dynamics and Control, 24(11-12), 1859-1880.
- Dybvig, P., 1988a. "Distributional Analysis of Portfolio Choice," Journal of Business, 61(3), 369-393.
- ▶ Dybvig, P., 1988b. "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market," *RFS*.
- Goldstein, D.G., Johnson, E.J., Sharpe, W.F., 2008. "Choosing Outcomes versus Choosing Products: Consumer-focused Retirement Investment Advice," *Journal of Consumer Research*, **35**(3), 440-456.