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Background,

Credit risk management

1 Management of credit risk is of utmost importance (Crisis 2008).

2 Portfolio models are subject to signi�cant model uncertainty
(defaults are rare and correlated events).

3 Recent studies (Embrechts et al. (2013,2014)) show that the

impact of model uncertainty on Value-at-Risk (VaR) estimates

is huge.
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Background,

Credit risk management: Notation

• n individual risks (L1, L2, ..., Ln) (risky loans)

• A portfolio S := L1 + ...+ Ln

• Value-at-Risk of S at level q ∈ (0, 1)

VaRq (S) = F−1S (q) = inf {x ∈ R | FS(x) ≥ q}
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Background,

Motivation on VaR aggregation

Full information on marginal distributions:

Lj ∼ Fj and represent risks as Lj=F−1j (Uj)

where Uj is U(0, 1).

+

Full Information on dependence:
(U1,U2, ...,Un) ∼ C (C is called the copula)

⇒

VaRq (L1 + L2 + ...+ Ln) can be computed!
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Background,

Motivation on VaR aggregation

Full information on marginal distributions:

Lj ∼ Fj and represent risks as Lj=F−1j (Uj)

where Uj is U(0, 1).
+

Partial or no Information on dependence:
(U1,U2, ...,Un) ∼???

⇒
VaRq (L1 + L2 + ...+ Ln) cannot be computed!

Only a range of possible values for VaRq (L1 + L2 + ...+ Ln).
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Background, Literature

Maximum VaR under Dependence Uncertainty

Bounds on Value-at-Risk

M := supVaRq [L1+L2+...+ Ln] ,
subject to Lj ∼ Fj , copula C = unknown

• Explicit sharp bounds
· n = 2 Makarov (1981), Rüschendorf (1982)

· homogeneous portfolios: Rüschendorf & Uckelmann (1991), Denuit,

Genest & Marceau (1999), Embrechts & Puccetti (2006), Wang &

Wang (2011), Bernard, Jiang and Wang (2014)

· heterogeneous portfolios: Wang & Wang (2015)

• Approximate sharp bounds
· The Rearrangement Algorithm (Puccetti & Rüschendorf (2012),

Embrechts, Puccetti & Rüschendorf (2013))
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Background, Observations

Observations

• The bound M may be too wide to be practically useful:

a feature that can only be explained by the absence of dependence

information.

• Our objective: incorporate dependence information
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Background, Observations

Bounds on Value-at-Risk

I VaRq is not maximized for the comonotonic scenario:

Sc = Lc1 + Lc2 + ...+ Lcn

where all Lci are comonotonic.

M ≥ VaRq [L
c
1 + Lc2 + ...+ Lcn]

= VaRq [L1] + VaRq [L2] + ...+ VaRq [Ln]

where (Lc1, L
c
2, ...L

c
n) is a comonotonic copy of (L1, L2, ...Ln), i.e.

(Lc1, L
c
2, ...L

c
n) = (F−1L1

(U),F−1L2
(U), ...,F−1Ln

(U)).
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Unconstrained VaR Bounds

Agenda

2 Unconstrained VaR Bounds

VaR Bounds with 2 risks

VaR Bounds with n risks

Example
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Unconstrained VaR Bounds, VaR Bounds with 2 risks

�Riskiest� Dependence: maximum VaRq in 2 dims

If L1 and L2 are U(0,1) comonotonic, then

VaRq(S
c) = VaRq(X1) + VaRq(X2) = 2q.

q

q
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Unconstrained VaR Bounds, VaR Bounds with 2 risks

�Riskiest� Dependence: maximum VaRq in 2 dims

If L1 and L2 are U(0,1) and antimonotonic in the tail, then

VaRq(S
∗) = 1+ q.

q

q

VaRq(S
∗) = 1+ q > VaRq(S

c) = 2q

⇒ to maximize VaRq, the idea is to change the comonotonic

dependence such that the sum is constant in the tail
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Unconstrained VaR Bounds, VaR Bounds with n risks

VaR at level q of the comonotonic sum w.r.t. q

p 
1 q 

VaRq(Sc) 
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Unconstrained VaR Bounds, VaR Bounds with n risks

VaR at level q of the comonotonic sum w.r.t. q

p 
1 q 

VaRq(Sc) 

TVaRq(Sc) 

where TVaR (Expected shortfall):TVaRq(X ) =
1

1− q

∫ 1

q
VaRu(X )du q ∈ (0, 1)
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Unconstrained VaR Bounds, VaR Bounds with n risks

Riskiest Dependence Structure VaR at level q

p 
1 q 

VaRq(Sc) 

S* => VaRq(S*) =TVaRq(Sc)? 
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Unconstrained VaR Bounds, VaR Bounds with n risks

Analytic expressions

Analytical Unconstrained Bounds with Lj ∼ Fj

A = LTVaRq(S
c) ≤ VaRq [L1 + L2 + ...+ Ln] ≤ B = TVaRq(S

c)

p 
1 q 

B:=TVaRq(Sc) 

A:=LTVaRq(Sc) 
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Unconstrained VaR Bounds, VaR Bounds with n risks

Proof for B

Upper bound for VaR with given marginals

VaRq [X1 + X2 + ...+ Xn] ≤ B := TVaRq [X
c
1 + X c

2 + ...+ X c
n ]

Here (X c
1 ,X

c
2 , ...X

c
n ) is a comonotonic copy of (X1,X2, ...Xn), i.e.

(X c
1 ,X

c
2 , ...X

c
n ) = (F−1X1

(U),F−1X2
(U), ...,F−1Xn

(U)).

Proof:
VaRq [X1 + X2 + ...+ Xn] ≤ TVaRq [X1 + X2 + ...+ Xn]

≤ TVaRq [X
c
1 + X c

2 + ...+ X c
n ]
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Unconstrained VaR Bounds, Example

Illustration for the maximum VaR (1/3)

  8 0 3 
 10 1 4 
 11 7 7 
 12 8 9 

1-q 

q 

Sum= 11 

Sum= 15 

Sum= 25 

Sum= 29 
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Unconstrained VaR Bounds, Example

Illustration for the maximum VaR (2/3)

  8 0 3 
 10 1 4 
 11 7 7 
 12 8 9 

1-q 

q 

Sum= 11 

Sum= 15 

Sum= 25 

Sum= 29 

Rearrange within 
columns..to make the 
sums as constant as  
possible… 
B=(11+15+25+29)/4=20 
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Unconstrained VaR Bounds, Example

Illustration for the maximum VaR (3/3)

  8 8 4 
 10 7 3 
 12 1 7 
 11 0 9 

1-q 

q 

Sum= 20 

Sum= 20 

Sum= 20 

Sum= 20 

=B!  
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VaR Bounds with Dependence Information, Literature

Agenda

3 VaR Bounds with Dependence Information

Literature

Problem
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VaR Bounds with Dependence Information, Literature

Constrained Problem

Finding minimum and maximum possible values for VaR of the credit

portfolio loss, L =
∑n

i=1 Li , given that

we know the marginal distributions of the risks Li .

we have some dependence information.

Example 1: variance constraint - Bernard, Rüchendorf and Vandu�el

(2015)

M := supVaRq [L1 + L2 + ...+ Ln] ,
subject to Lj ∼ Fj , var(L1 + L2 + ...+ Ln) ≤ s2

Example 2: VaR bounds when the joint distribution of (L1, L2, ..., Ln)
is known on a subset of the sample space: Bernard and Vandu�el

(2015).
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VaR Bounds with Dependence Information, Problem

Description

It appears that adding dependence information can sharpen the

bounds considerably. Here,

I VaR bounds with higher order moments on the portfolio sum
I Portfolio loss

L =
n∑

i=1

Li where Li ∼ viB(pi ) (vi ≥ 0)

Hence, Li is a scaled Bernoulli rv.
I We are interested in the problem:

M:= supVaRq[L]

subject to Li∼viB(pi ) and E [Lk ] ≤ ck (k = 2, 3, ...,K ).

I Extended version of the RA

I Assess model risk of industry credit risk models for VaR
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VaR Bounds with Dependence Information, Problem

VaR bounds with moment constraints

I Without moment constraints, VaR bounds are attained if there

exists a dependence among risks Li such that

L =

{
A probability q
B probability 1− q

a.s.

If the �distance� between A and B is too wide then improved

bounds are obtained with

L∗=

{
a with probability q
b with probability 1− q

such that {
akq + bk(1− q) ≤ ck
aq + b(1− q) = E [L]

in which a and b are �as distant as possible while satisfying the

constraint�
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VaR Bounds with Dependence Information, Problem

Dealing with moment constraints

To �nd a and b, solve for each k = 2, 3, ..,K the system of equations

(A ≤ B) {
Aq + B(1− q) = E (L)
Akq + Bk(1− q) = ck

and obtain K − 1 pairs {Aj ,Bj}. Then, take

b = min {B j |j = 2, 3, ...,K}

a =
E [L]− b(1− q)

q
.
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Approximate VaR Bounds, Rearrangement Algorithm

Agenda

4 Approximate VaR Bounds

Rearrangement Algorithm

Standard Rearrangement Algorithm

Extended Rearrangement Algorithm
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Approximate VaR Bounds, Rearrangement Algorithm

Approximating Sharp Bounds

The bounds a and b are sharp if one can construct dependence

among the risks Li such that quantile function of their sum L
becomes �at on [0, q] and on [q, 1]. This holds true under certain

conditions (see eg Wang and Wang, 2014).

To approximate sharp VaR bounds: Extended Rearrangement

Algorithm (RA).

Standard RA (Puccetti and Rüschendorf, 2012):

I Put the margins in a matrix

I Rearrange each column (adapt the dependence) such that L
(row-sums) approximates a constant (E [L])
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Approximate VaR Bounds, Standard Rearrangement Algorithm

Example

N = 4 observations of d = 3 variables: L1, L2, L3

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 14, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0


 SN =




16
9
3
0




(2)

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

New set...

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

New set...

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.

1

Each column: marginal distribution
Interaction among columns: dependence among the risks
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Approximate VaR Bounds, Standard Rearrangement Algorithm

Standard RA: Sum with Minimum Variance

minimum variance with d = 2 risks L1 and L2
Antimonotonicity: var(La

1
+ L2) ≤ var(L1 + L2)

Aggregate Risk with Minimum Variance

I Columns of M are rearranged such that they become

anti-monotonic with the sum of all other columns.

∀k ∈ {1, 2, ..., d},Lak antimonotonic with
∑

j 6=k

Lj

I After each step, var
(
La
k
+
∑

j 6=k Lj

)
≤ var

(
Lk +

∑
j 6=k Lj

)

where La
k
is antimonotonic with

∑
j 6=k Lj
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Aggregate risk with minimum variance
Step 1: First column

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 14, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13




X1 + X2 + X3


6 6 4
4 3 3
1 1 2
0 0 0


 SN =




16
9
3
0




(2)

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

New set...

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.

1
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Aggregate risk with minimum variance

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

↓ X1 + X2


0 3 4
1 6 2
4 1 1
6 0 0




3
7
5
6

becomes




0 3 4
1 6 0
4 1 2
6 0 1




(5)

All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2
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Approximate VaR Bounds, Standard Rearrangement Algorithm

Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

↓ X1 + X2


0 3 4
1 6 2
4 1 1
6 0 0




3
7
5
6

becomes




0 3 4
1 6 0
4 1 2
6 0 1




(5)

All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

↓ X1 + X2


0 3 4
1 6 2
4 1 1
6 0 0




3
7
5
6

becomes




0 3 4
1 6 0
4 1 2
6 0 1




(5)

All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2

The minimum variance of the sum is equal to 0! (ideal case of a

constant sum (complete mixability, see Wang and Wang (2011))
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Approximate VaR Bounds, Extended Rearrangement Algorithm

Illustration

… … … -a 

… … … -a 

… … … -a 

… … … -a 

  8 8 4 -b 

 10 7 3 -b 

 12 1 7 -b 

 11 0 9 -b 

1-q 

q 

Rearrange now 
within all 
columns such 
that all sums 
becomes close 
to zero 

Extended RA 
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Approximate VaR Bounds, Extended Rearrangement Algorithm

Extended RA

ERA: Apply RA on the new matrix and check:

� If all constraints are satis�ed, then L∗ readily generates the

approximate solutions to the problem

� If not, decrease b by ε, and compute a such as the

expectation of L is satis�ed. Apply the extended RA again.
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Agenda

5 Case Study: Credit Risk Portfolio
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Case Study: Credit Risk Portfolio

Corporate portfolio

I a corporate portfolio of a major European Bank.

I 4495 loans mainly to medium sized and large corporate clients

I total exposure (EAD) is 18642.7 (million Euros), and the top

10% of the portfolio (in terms of EAD) accounts for 70.1% of it.

I portfolio exhibits some heterogeneity.

Summary statistics of a corporate portfolio

Minimum Maximum Average

Default probability 0.0001 0.15 0.0119
EAD 0 750.2 116.7
LGD 0 0.90 0.41
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Case Study: Credit Risk Portfolio

Comparison of Industry Models

VaRs of a corporate portfolio under di�erent industry models

q = Comon. KMV Credit Risk+ Beta

95% 393.5 281.3 281.8 282.5
95% 393.5 340.6 346.2 347.4

ρ = 0.10 99% 2374.1 539.4 513.4 520.2
99.5% 5088.5 631.5 582.9 593.5
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Case Study: Credit Risk Portfolio

VaR bounds

With ρ = 0.1,
VaR assessment of a corporate portfolio

q = KMV Comon. Unconstrained K = 2 K = 3 K = 4

95% 340.6 393.3 (34.0 ; 2083.3) (97.3 ; 614.8) (100.9 ; 562.8) (100.9 ; 560.6)
99% 539.4 2374.1 (56.5 ; 6973.1) (111.8 ; 1245.0) (115.0 ; 941.2) (115.9 ; 834.7)
99.5% 631.5 5088.5 (89.4 ; 10119.9) (114.9 ; 1709.4) (117.6 ; 1177.8) (118.5 ; 989.5)
99.9% 862.4 12905.1 (111.8 ; 14784.9) (119.2 ; 3692.3) (120.8 ; 1995.9) (121.2 ; 1472.7)

Obs 1: Comparison with analytical bounds

Obs 2: Signi�cant bounds reduction with moments information
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Conclusions

1 We propose simple bounds for VaR of a portfolio when there is

information on the higher order moments of the portfolio sum.

2 We propose a new algorithm to approximate sharp VaR bounds.

3 Considering additional moment constraints can strengthen the

unconstrained VaR bounds signi�cantly.

4 Illustration with credit risk models
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