Prices and Asymptotics of Variance Swaps

Carole Bernard
Zhenyu (Rocky) Cui

Beirut, May 2013.
Outline

- Motivation
- Convex order conjecture
- Discrete variance swaps: prices and asymptotics
- Conclusion & Future Directions
A variance swap is an OTC contract:

\[
\text{Notional} \times \left(\frac{1}{T} \, \text{Realized Variance} - \text{Strike} \right)
\]

- Realized Variance: \(\text{RV} = \sum_{i=0}^{n-1} \left(\ln \left(\frac{S_{t_{i+1}}}{S_{t_i}} \right)^2 \right) \) with \(0 = t_0 < t_1 < \ldots < t_n = T \).

- Quadratic Variation: \(\text{QV} = \lim_{n \to \infty, \max_{i=0,1,\ldots,n-1} (t_{i+1} - t_i) \to 0} \text{RV} \).

- In practice, variance swaps are discretely sampled but it is typically easier to compute the continuously sampled in popular stochastic volatility models.

- Question: Finding “fair” strikes so that the initial value of the contract is 0.
Under the risk-neutral probability measure Q, the model setting is given by:

\[
\begin{align*}
\frac{dS_t}{S_t} &= rdt + \sqrt{V_t}dW_t^{(1)} \\
\quad dV_t &= \mu(V_t)dt + \sigma(V_t)dW_t^{(2)}
\end{align*}
\]

where $\mathbb{E}[dW_t^{(1)}dW_t^{(2)}] = \rho dt$.
Three Stochastic Volatility Models

Assume $\mathbb{E}[dW_t^{(1)} dW_t^{(2)}] = \rho dt$.

- The **correlated** Heston model:

 \[
 \begin{align*}
 \frac{dS_t}{S_t} &= rdt + \sqrt{V_t} dW_t^{(1)}, \\
 dV_t &= \kappa(\theta - V_t) dt + \gamma \sqrt{V_t} dW_t^{(2)}
 \end{align*}
 \]

- The **correlated** Hull-White model:

 \[
 \begin{align*}
 \frac{dS_t}{S_t} &= rdt + \sqrt{V_t} dW_t^{(1)}, \\
 dV_t &= \mu V_t dt + \sigma V_t dW_t^{(2)}
 \end{align*}
 \]

- The **correlated** Schöbel-Zhu model:

 \[
 \begin{align*}
 \frac{dS_t}{S_t} &= rdt + V_t dW_t^{(1)} \\
 dV_t &= \kappa(\theta - V_t) dt + \gamma dW_t^{(2)}
 \end{align*}
 \]
Model Setting (2/2)

- Under the risk-neutral probability measure Q,

\[
\begin{align*}
\frac{dS_t}{S_t} &= rdt + \sqrt{V_t} dW_t^{(1)} \\
\quad dV_t &= \mu(V_t) dt + \sigma(V_t) dW_t^{(2)}
\end{align*}
\]

where $\mathbb{E}[dW_t^{(1)} dW_t^{(2)}] = \rho dt$.

- The fair strike of the “discrete variance swap” is

\[
K_d^M(n) := \frac{1}{T} \mathbb{E} \left[\sum_{i=0}^{n-1} \left(\ln \frac{S_{t_{i+1}}}{S_{t_i}} \right)^2 \right] = \frac{1}{T} \mathbb{E}[RV]
\]

- The fair strike of the “continuous variance swap” is

\[
K_c^M := \frac{1}{T} \mathbb{E} \left[\int_0^T V_s ds \right] = \frac{1}{T} \mathbb{E}[QV]
\]
Contributions

- A general expression for the fair strike of a discrete variance swap in the time-homogeneous stochastic volatility model:

- Application in three popular stochastic volatility models

- Asymptotic expansion of the fair strike with respect to n, T, vol of vol...

- A counter-example to the “Convex Order Conjecture”.

Carole Bernard
Convex Order Conjecture

Notations:

1. \(RV = \sum_{i=0}^{n-1} (\log(S_{t_i+1}/S_{t_i}))^2 \): discrete realized variance for a partition of \([0, T]\) with \(n + 1\) points;

2. \(QV = \int_0^T V_s ds \): continuous quadratic variation.

Usual practice: approximate \(\mathbb{E}[f(RV)] \) with \(\mathbb{E}[f(QV)] \), see Jarrow et al (2012).

Bühlher (2006): “while the approximation of realized variance via quadratic variation works very well for variance swaps, it is not sufficient for non-linear payoffs with short maturities”.

Call option on \(RV \): \((RV - K)^+ \);

Call option on \(QV \): \((QV - K)^+ \).
Options on Quadratic Variation vs. Realized Variance in a Heston model

Plot from Bühler (2006b).
The convex-order conjecture (Keller-Ressel (2011)):

“The price of a call option on realized variance is higher than the price of a call option on quadratic variation”

Equivalently, \(\mathbb{E}[f(RV)] \geq \mathbb{E}[f(QV)] \) where \(f \) is convex.

When \(f(x) = x \), our closed-form expression shows that when the correlation between the underlying and its variance is positive, it is possible to observe \(K_d^M(n) < K_c^M \) (Illustrated by examples in Heston, Hull-White and Schöbel-Zhu models \((M)\)).
Conditional Black-Scholes Representation

- Recall

\[
\begin{align*}
 \frac{dS_t}{S_t} &= rdt + \sqrt{V_t}dW_t^{(1)} \\
 dV_t &= \mu(V_t)dt + \sigma(V_t)dW_t^{(2)}
\end{align*}
\]

- Cholesky decomposition: \(dW_t^{(1)} = \rho dW_t^{(2)} + \sqrt{1 - \rho^2}dW_t^{(3)} \).

- Key representation of the log stock price

\[
\ln(S_T) = \ln(S_0) + rt - \frac{1}{2} \int_0^T V_t dt + \rho \left(f(V_T) - f(V_0) - \int_0^T h(V_t) dt \right) + \sqrt{1 - \rho^2} \int_0^T \sqrt{V_t}dW_t^{(3)}
\]

where \(f(v) = \int_0^v \frac{\sqrt{z}}{\sigma(z)} dz, \ h(v) = \mu(v)f'(v) + \frac{1}{2} \sigma^2(v)f''(v) \).
Proposition

Under some technical conditions, \((\Delta = \frac{T}{n})\):

\[
E \left[\left(\ln \frac{S_{t+\Delta}}{S_t} \right)^2 \right] = r^2 \Delta^2 - r \Delta \int_t^{t+\Delta} E[V_s] \, ds \\
+ \frac{1}{4} E \left[\left(\int_t^{t+\Delta} V_s \, ds \right)^2 \right] + (1 - \rho^2) \int_t^{t+\Delta} E[V_s] \, ds \\
+ \rho^2 E \left[(f(V_{t+\Delta}) - f(V_t))^2 \right] + \rho^2 E \left[\left(\int_t^{t+\Delta} h(V_s) \, ds \right)^2 \right] \\
+ \rho E \left[\int_t^{t+\Delta} h(V_s) \, ds \int_t^{t+\Delta} V_s \, ds \right] \\
- \rho E \left[(f(V_{t+\Delta}) - f(V_t)) \int_t^{t+\Delta} (2\rho h(V_s) + V_s) \, ds \right].
\]
Proposition (Sensitivity to r)

The fair strike of the discrete variance swap:

$$K_d^M(n) = b^M(n) - \frac{T}{n} K_c^M r + \frac{T}{n} r^2,$$

where $b^M(n)$ does **not** depend on r.

$$\frac{dK_d^M(n)}{dr} = \frac{T}{n} (2r - K_c^M)$$

$K_d^M(r)$ reaches **minimum** when $r^* = \frac{K_c^M}{2}$.
Three Stochastic Volatility Models

Assume $\mathbb{E}[dW_t^{(1)} dW_t^{(2)}] = \rho dt$.

- The **correlated** Heston model:

$\begin{align*}
\text{(H)} & \quad \begin{cases}
\frac{dS_t}{S_t} = r dt + \sqrt{V_t} dW_t^{(1)}, \\
dV_t = \kappa(\theta - V_t) dt + \gamma \sqrt{V_t} dW_t^{(2)}
\end{cases}
\end{align*}$

- The **correlated** Hull-White model:

$\begin{align*}
\text{(HW)} & \quad \begin{cases}
\frac{dS_t}{S_t} = r dt + \sqrt{V_t} dW_t^{(1)}, \\
dV_t = \mu V_t dt + \sigma V_t dW_t^{(2)}
\end{cases}
\end{align*}$

- The **correlated** Schöbel-Zhu model:

$\begin{align*}
\text{(SZ)} & \quad \begin{cases}
\frac{dS_t}{S_t} = r dt + V_t dW_t^{(1)} \\
dV_t = \kappa(\theta - V_t) dt + \gamma dW_t^{(2)}
\end{cases}
\end{align*}$
The fair strike of the **discrete** variance swap is

\[
K_d^H(n) = \frac{1}{8n\kappa^3 T} \left\{ 2\kappa T \left(\kappa^2 T (\theta - 2r)^2 + n\theta \left(4\kappa^2 - 4\rho\kappa\gamma + \gamma^2 \right) \right) \\
+ n \left(\gamma^2 (\theta - 2V_0) + 2\kappa (V_0 - \theta)^2 \right) \left(e^{-2\kappa T} - 1 \right) \frac{1 - e^{\frac{\kappa T}{n}}}{1 + e^{\frac{\kappa T}{n}}} \\
+ 4 (V_0 - \theta) \left(n (2\kappa^2 + \gamma^2 - 2\rho\kappa\gamma) + \kappa^2 T (\theta - 2r) \right) \left(1 - e^{-\kappa T} \right) \\
- 2n^2\theta\gamma (\gamma - 4\rho\kappa) \left(1 - e^{-\frac{\kappa T}{n}} \right) + 4 (V_0 - \theta) \kappa T \gamma (\gamma - 2\rho\kappa) \frac{1 - e^{-\kappa T}}{1 - e^{\frac{\kappa T}{n}}} \right\}
\]

The fair strike of the **continuous** variance swap is

\[
K_c^H = \frac{1}{T} \mathbb{E} \left[\int_0^T V_s ds \right] = \theta + (1 - e^{-\kappa T}) \frac{V_0 - \theta}{\kappa T}.
\]
The fair strike of the **discrete** variance swap is

\[
K_{d}^{HW}(n) = \frac{r^2 T}{n} + \frac{V_0}{\mu T} \left(1 - \frac{rT}{n} \right) \left(e^{\mu T} - 1 \right)
- \frac{V_0^2 \left(e^{(2\mu + \sigma^2)T} - 1 \right) \left(e^{\frac{\mu T}{n}} - 1 \right)}{2T \mu (\mu + \sigma^2) \left(e^{\frac{(2\mu + \sigma^2)T}{n}} - 1 \right)} + \frac{V_0^2 \left(e^{(2\mu + \sigma^2)T} - 1 \right)}{2T (2\mu + \sigma^2) (\mu + \sigma^2)}
+ \frac{8\rho \left(e^{\frac{3(4\mu + \sigma^2)T}{8}} - 1 \right) V_0^{3/2} \sigma \left(e^{\frac{\mu T}{n}} - 1 \right)}{\mu T (4\mu + 3\sigma^2) \left(e^{\frac{3(4\mu + \sigma^2)T}{8n}} - 1 \right)} - \frac{64\rho \left(e^{\frac{3(4\mu + \sigma^2)T}{8}} - 1 \right) V_0^{3/2} \sigma}{3T (4\mu + \sigma^2) (4\mu + 3\sigma^2)}
\]

The fair strike of the **continuous** variance swap is

\[
K_{c}^{HW} = \frac{1}{T} \mathbb{E} \left[\int_0^T V_s ds \right] = \frac{V_0}{T\mu} (e^{\mu T} - 1).
\]
The fair strike of the \textbf{discrete} variance swap is explicit but too complicated to appear on a slide. The fair strike of the \textbf{continuous} variance swap is

\[
K_{c}^{SZ} = \frac{\gamma^2}{2\kappa} + \theta^2 + \left(\frac{(V_0 - \theta)^2}{2\kappa T} - \frac{\gamma^2}{4\kappa^2 T} \right) \left(1 - e^{-2\kappa T}\right) + \frac{2\theta(V_0 - \theta)}{\kappa T} \left(1 - e^{-\kappa T}\right).
\]
Heston model: Expansion w.r.t n

\[K^H_d(n) = K^H_c + \frac{a^H_1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right). \]

where a^H_1 is a **linear and decreasing** function of ρ:

\[a^H_1 \geq 0 \iff \rho \leq \rho^H_0 \]

where

\[\rho^H_0 = \frac{r^2 T - rK^H_c T + \left(\frac{\theta^2}{4} + \frac{\theta \gamma^2}{8\kappa}\right) T + c_1}{\left(\frac{\gamma(\theta-V_0)}{2\kappa}(1 - e^{-\kappa T}) - \frac{\theta \gamma T}{2}\right)}. \]

\[^1 \text{Explicit expression of } a^H_1 \text{ is in Proposition 5.1, Bernard and Cui (2012).} \]
Hull-White model: Expansion w.r.t n

$$K_d^{HW}(n) = K_c^{HW} + \frac{a_1^{HW}}{n} + O\left(\frac{1}{n^2}\right)$$

where a_1^{HW} is a linear and decreasing function of ρ:²

$$a_1^{HW} \geq 0 \iff \rho \leq \rho_0^{HW}$$

where

$$\rho_0^{HW} = \frac{3(4\mu + \sigma^2) \left(r^2 T - r K_c^{HW} T + \frac{V_0^2}{4} \frac{e^{(2\mu+\sigma^2)T} - 1}{2\mu+\sigma^2} \right)}{4\sigma V_0^2 \left(e^{3\frac{3}{8}(4\mu+\sigma^2)T} - 1 \right)} > 0.$$
The asymptotic behavior of the fair strike of a discrete variance swap in the Schöbel-Zhu model is given by

\[K_{d\,SZ}^S(n) = K_{c\,SZ} + \frac{a_{1\,SZ}}{n} + O\left(\frac{1}{n^2}\right), \]

where

\[a_{1\,SZ} = r^2 T - rTK_{c\,SZ} + d_1 + d_2 \frac{\gamma}{2\kappa} \rho. \] (1)

and where \(d_1 \) and \(d_2 \) are explicit.
Given that the expressions are explicit, it is straightforward to obtain expansions for the discrete variance swaps as a function of the different parameters, and for example with respect to the maturity or to the volatility of volatility.
Expansion of the fair strike for small maturity T

In the **Heston model**, an expansion of $K_d^H(n)$ when $T \to 0$ is

$$K_d^H(n) = V_0 + b_1^H T + b_2^H T^2 + \mathcal{O}(T^3)$$

where

$$b_1^H = \frac{\kappa(\theta - V_0)}{2} + \frac{1}{4n} \left((V_0 - 2r)^2 - 2\gamma V_0\rho \right)$$

$$b_2^H = \frac{\kappa^2(V_0 - \theta)}{6} + \frac{(V_0 - \theta)\kappa(\gamma\rho + 2r - V_0) + \gamma^2 V_0}{4n} + \frac{\gamma\rho\kappa(V_0 + \theta) - \gamma^2 V_0}{12n^2}.$$

and we have

$$K_d^H(n) - K_c^H = \frac{1}{4n} \left((V_0 - 2r)^2 - 2\rho\gamma V_0 \right) T + \mathcal{O}(T^2).$$
Expansion of the fair strike for small maturity

In the **Hull-White model**, an expansion of $K_{d}^{HW}(n)$ when $T \to 0$ is

$$K_{d}^{HW}(n) = V_0 + b_{1}^{HW} T + b_{2}^{HW} T^2 + O(T^3)$$

where

$$b_{1}^{HW} = \frac{V_0 \mu}{2} + \frac{1}{4n} \left((V_0 - 2r)^2 - 2\rho V_0^{3/2} \right)$$

$$b_{2}^{HW} = \frac{V_0 \mu^2}{6} + \frac{V_0}{4n} \left(\frac{\sigma^2 V_0}{2} - \frac{3\rho V_0^{1/2} \sigma (\sigma^2 + 4\mu)}{8} + \mu (V_0 - 2r) \right)$$

$$+ \frac{V_0^{3/2} \sigma (\rho (3\sigma^2 - 4\mu) - 4\sigma \sqrt{V_0})}{96n^2}$$

Note also

$$K_{d}^{HW}(n) - K_{c}^{HW} = \frac{1}{4n} \left((V_0 - 2r)^2 - 2\rho V_0^{3/2} \right) T + O(T^2).$$
Expansion of the fair strike for small maturity

In the **Schöbel-Zhu model**, an expansion of $K_d^{HW}(n)$ when $T \to 0$ is

$$K_d^{SZ}(n) = V_0^2 + b_1^{SZ} T + O(T^2)$$

where

$$b_1^{SZ} = \kappa V_0 (\theta - V_0) + \frac{\gamma^2}{2} + \frac{1}{n} \left(r^2 - r V_0^2 + \frac{V_0^2 (V_0^2 - 4 \rho \gamma)}{4} \right)$$

Note also

$$K_d^{SZ}(n) - K_c^{SZ} = \frac{1}{4n} \left((V_0^2 - 2r)^2 - 4 \rho V_0^2 \gamma \right) T + O(T^2).$$
Parameters

- **Heston model**: First set of parameters from Broadie and Jain (2008). Second set is when $T = 1/12$.

- **Hull-White model**: obtain μ by numerically solving $K_c^H = K_c^{HW}$, and determine σ so that the variances of V_T in the Heston and Hull-White models match.

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>r</th>
<th>V_0</th>
<th>ρ</th>
<th>γ</th>
<th>θ</th>
<th>κ</th>
<th>μ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td>1</td>
<td>3.19%</td>
<td>0.010201</td>
<td>-0.7</td>
<td>0.31</td>
<td>0.019</td>
<td>6.21</td>
<td>1.003</td>
<td>0.42</td>
</tr>
<tr>
<td>Set 2</td>
<td>1/12</td>
<td>3.19%</td>
<td>0.010201</td>
<td>-0.7</td>
<td>0.31</td>
<td>0.019</td>
<td>6.21</td>
<td>4.03</td>
<td>1.78</td>
</tr>
</tbody>
</table>
Heston Model (T=1)

- K_H^d
- $\rho = -0.7$
- $\rho = 0$
- $\rho = 0.7$

Hull–White Model (T=1)

- K_{HW}^d
- $\rho = -0.7$
- $\rho = 0$
- $\rho = 0.7$

Heston Model (T=1/12)

- K_H^d
- $\rho = -0.7$
- $\rho = 0$
- $\rho = 0.7$

Hull–White Model (T=1/12)

- K_{HW}^d
- $\rho = -0.7$
- $\rho = 0$
- $\rho = 0.7$
Figure 4: Asymptotic expansion with respect to the correlation coefficient ρ and the risk-free rate r

Parameters correspond to Set 1 in Table 1 except for r that can take three possible values $r = 0\%$, $r = 3.2\%$ or $r = 6\%$. Here $n = 250$, which corresponds to a daily monitoring as $T = 1$.
Figure 8: Asymptotic expansion with respect to the correlation coefficient ρ and the risk-free rate r.
Parameters are similar to Set 1 in Table 1 for the Heston model except for r that can take three possible values $r = 0\%$, $r = 3.2\%$ or $r = 6\%$. Precisely, we use the following parameters for the Schöbel-Zhu model: $\kappa = 6.21$, $\theta = \sqrt{0.019}$, $\gamma = 0.31$, $\rho = -0.7$, $T = 1$, $V_0 = \sqrt{0.010201}$. Here $n = 250$, which corresponds to a daily monitoring as $T = 1$.
Conclusions & Future Directions

- Explicit expressions and asymptotics for $K_d^M(n)$ in any time homogeneous stochastic volatility model (M).
- Allow to better understand the effect of discretization.
- Future directions:
 1. Extend our study with the 3/2 model
 \[
 (dS_t = S_t \sqrt{V_t} dW_1(t), \quad dV_t = (\omega V_t - \theta V_t^2) dt + \xi V_t^{3/2} dW_2(t)).
 \]
 2. Work on expansions valid in a more general setting...
 3. Find out whether the first term in the expansion is always linear in the correlation ρ.
 4. Generalize the explicit pricing formula to the case of discrete gamma swaps under the Heston model.

\[
Notional \times \frac{1}{T} \times \sum_{i=0}^{n-1} \frac{S_{t_{i+1}}}{S_0} \left(\ln \frac{S_{t_{i+1}}}{S_{t_i}} \right)^2
\]

5. Generalize to the mixed exponential jump diffusion model for which it is possible to compute discrete and continuous fair strikes.
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Convex Order Conjecture</th>
<th>Variance Swap</th>
<th>Numerics</th>
<th>Conclusions</th>
</tr>
</thead>
</table>