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1 Motivation

To find bounds:

• for the price p of a future insurance claim CT that cannot be hedged.

• but for which we know the cdf FCT
under the physical probability

measure P.

Most premium principles appearing in the literature satisfy the positive
loading condition (no-undercut) i.e.

p ≥ E[CT ]e−rT ,

where r is the fixed rate one is earning in (0, T ). (see e.g. Embrechts,
2000).



2 Main result

We challenge:

Traditional lowerbound := E[CT ]e−rT .

We argue it need to be corrected to reflect possible interaction with the

financial market:

New lowerbound := E[CT ]e−rT+Cov(CT, ξT),

where ξT is some financial payoff (we specify this further).



3 Assumptions on Preferences

1. Agents have a fixed investment horizon T > 0.

2. Agents have “law-invariant” preferences. i.e. for an objective function
V (.) and final wealths XT ∼ YT it holds that V (XT ) = V (YT ) .

3. Agents prefer “more to less”: for a non-negative r.v. C: V (XT +C) ≥
V (XT ).

4. Agents are risk-averse:
{

E[XT ] = E[YT ]
∀d ∈ R, E[(XT − d)+] ≤ E[(YT − d)+]

⇒ V (XT ) � V (YT ).



4 Traditional approach: certainty equivalents

Setting:

• From the viewpoint of the insured with objective function U(·) and

initial wealth ωb the (bid) price pb follows from:

U [(ωb − pb)erT ] = U [ωbe
rT −CT ].

• From the viewpoint of the insurer with objective function V (·) and

initial wealth ωa the ask price pa follows from:

V [(ωa + pa)erT − CT ] = V [ωae
rT ].

Note that the financial market only appears through the availability of

a bank account earning the fixed intrest rate r > 0.



Properties:

• Bid and Ask prices verify the no-undercut principle:

p· � e−rTE[CT ],

where we have used notation p· to reflect both pa and pb

• If the insurer is risk neutral (v(x) = x), then

pb ≥ pa = e−rTE[CT ].

• In the case of exponential utility (when U = V ) pa = pb.

• In the case of Yaari’s theory (when U = V ) pa = pb.



In general, no strong assertions regarding the ordering between pa and pb

are in reach. Assume u(x) = v(x) = 1−1/x and let both agents have the

same initial wealth, CT ∼ U(0, 2) :



Issue:

• This framework ignores completely the available prices of other finan-

cial instruments and one may then already wonder if it can possibly

be used to price claims that are connected with the financial market.

• Indeed this framework is incompatible with pricing of financial claims.

Assume a common stock with payoff ST at time T . The price S0 is

usually such that E(ST ) > S0e
rT . Hence

S0 < e−rTE[ST ],

in other words we violate the traditional lower bound.



Questions:

• How to integrate the presence of financial markets in the framework

of certainty equivalents.

• Can we ensure that the resulting pricing mechanism is coherent with

the prices of financial instruments.

• What is the impact of the new framework, if any, on the stated classical

lower bound.



5 Financial pricing

Assumption: There is a financial (sub) market containing a riskless asset

and a risky asset S such that all call options (written on S) maturing at

time T > 0 are traded.

Consequence: There is a (so-called risk neutral) measure Q such that for

all claims XT = f(ST ) it holds that

pa = pb = e−rTEQ[XT ],

or equivalently, there is payoff ξT such that the price of a financial claim

XT can also be expressed as

pa = pb = EP [ξTXT ],



6 A market consistent approach

• Let A(w) be the set of random financial wealths XT that can be
obtained (in the financial sub-market) for the initial budget w > 0.
From the viewpoint of the insured with objective function U(·) and
initial wealth ωb the (bid) price pb follows from:

sup
XT∈A(wb−pb)

{U [XT ]} = sup
XT∈A(wb)

{U [XT − CT ]} .

• From the viewpoint of the insurer with objective function V (·) and
initial wealth wa the ask price pa follows from:

sup
XT∈A(wa+pa)

{V [XT − CT ]} = sup
XT∈A(wa)

{V [XT ]} .

(see e.g. Hodges and Neuberger (1989) or also Henderson & Hobson
(2004))



Properties:

• This approach can be shown to be market consistent, i.e. when CT is

a financial claim then one has that pb = pa = E[ξT .CT ].

• In general computing the bid and ask prices pb and pa explicitly is not in

reach (in the paper we show how the technique of pathwise optimisation

can be helpful).

• This stresses the need for determining bounds that can be computed

easily.



7 New Lower bound

• We find that

p·≥ E[ξT .CT ].

• Hence both the insured and the insurer are potentially prepared to agree

on a price for the insurance payoff CT which is larger than the price “like

if CT would be a financial payoff”.

• This result is rooted in work on cost-efficient financial payoffs (Bernard,

Boyle and Vanduffel, 2011).

• Remark that the lower bound E[ξT .CT ] is actually the market price of

the financial payoff E[CT |ξT ].



• We then also find that

p· ≥ e−rT .E[CT ]+Cov[CT , ξT ].

• Hence when the claim CT and the state-price ξT are negatively corre-

lated we find that e−rT .E[CT ] is no longer a lower bound for pb and pa,

which contrasts with traditional (and intuitively appealing) wisdom stated

in many actuarial text books.

• Note that if we only allow for the riskless asset to exist, then A(w) ={
werT

}
, ξT = e−rT and we obtain the traditional lowerbound e−rT .E[CT ]

again.



• If CT is independent of (the market) ξT ,

p· ≥ e−rT .E[CT ].

The independence implies that the financial market cannot help at all

to hedge the insurance claim. It appears therefore intuitive that our

bound coincides with the classical bound.

• If CT is positively correlated with the market, the classical lower

bound e−rTE[CT ] is now strictly improved.

p· ≥ e−rT .E[CT ] + Cov[CT , ξT ] > e−rT .E[CT ].



• However if CT is negatively correlated with the market, the lower

bound is smaller

p· ≥ e−rT .E[CT ] + Cov[CT , ξT ].

E.g. The best lower bound for equity-linked insurance benefits will

generally be lower than e−rTE[CT ] because

Cov(ST , ξT ) = E[ST ξT ]−E[ST ]E[ξT ]

= e−rT (EQ[ST ]−EP [ST ]),



8 Example

In the Black-Scholes model,

dSt

St
= µdt + σdWP

t ,

with µ > r. The state price process exists and is unique ξt = a
(
St
S0

)−θ
σ ,

where a = e
θ
σ(µ−σ2

2 )t−(r+θ2

2 )t and θ = µ−r
σ .

Note that ξt is decreasing in St, then for all c ∈ R

P(St > c) > Q(St > c),



Consider a very simple insurance claim that pays at time T = 1 a payoff

C1 distributed as a Bernoulli r.v.

3 cases:

First, the insurance claim C1 is linked to the death of a specific individual,

then

E[C1|ξ1] = E[C1].

and

E[C1] = P(death).

Bid and ask prices p· satisfy

p· ≥ E[ξ1E[C1|ξ1]] = e−rE[C1] = e−rP(death).



Second, C1 pays 1 if the individual dies and the risky asset in the market

is higher than a value H or equivalently {ξ1 < L} = {S1 > H}). Then

E[C1|ξ1] = E[1death1ξ1<L|ξ1]

= P(death)1S1>H.

and

E[C1] = P(death)P(S1 > H).

Then bid and ask prices need to satisfy

p· ≥ e−r.P(death)Q(S1 > H),

and we violate the classical lower bound

e−r.P(death)Q(S1 > H) < e−rE[C1].



Third, C1 pays 1 if a designated person dies and the risky asset in the

market is lower than a value H. Then, Cov(C1, ξ1) > 0 and bid and ask

prices satisfy

p· ≥ e−r.P(death).Q(S1 < H)

and we improve the classical lower bound

e−r.P(death)Q(S1 < H) > e−rE[C1].



9 Final Remarks

• We have determined a lower bound for the price of an insurance claim,

and it corresponds to the price of some financial payoff. Note that if we

have a financial market with the riskless asset only we obtain the classical

lower bound again.

• The new lower bound is not restricted to EUT setting.

• In the paper we also discuss partial insurance. Some but not all results

continue to hold.

• In the paper we also introduce another lower bound under a much milder

notion of risk aversion.
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11 Additional material on cost-efficiency

11.1 Set-up

• Consider an arbitrage-free and complete financial market with a corre-

sponding probability space (Ω,̥, P ).

• Given a strategy with payoff XT at time T > 0. There exists a measure

Q such that its price at 0 is

c(XT ) = EQ[e−rTXT ].



• P (“physical measure”) and Q (“risk-neutral measure”) are two equiv-

alent probability measures:

ξT = e−rT (
dQ

dP
)T ,

and the cost c(XT ) also writes as

c(XT ) = E [ξTXT ] .

• We assume ξT is continuously distributed.



11.2 Some Results

• Same distribution - lower cost (Bernard, Boyle, Vanduffel (2011))

The solution for

Min
{XT | XT∼G}

c {XT}

is given by X∗
T = h(ξT ) with h(·)=G−1(1− FξT

(·)).

Proof

X∗
T has distribution G. It is also anti-monotonic with ξT . Hence amongst

all payoffs with fixed distribution G, it is X∗
T which has minimal correlation

with ξT , or equivalently, the cost c(X∗
T ) = E[ξTX∗

T ] is minimal.



• Same cost - less spread (Bernard, Boyle, Vanduffel (2011))

The payoff E [XT |ξT ]has the same cost as XT (but has less spread).

Proof We have that

c(XT ) = E[ξT .XT ]

= E[E[ξT .XT |ξT ]

= E[ξT .E[XT |ξT ]]

= c(E[XT |ξT ]).

• Both results allow to find optimal strategies for investors who only care

about the distribution of final wealth.


