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Contributions

▶ Deriving explicitly the cheapest and the most expensive
strategy to achieve a given distribution under general
assumptions on the financial market.

▶ Extension of the work by
Cox, J.C., Leland, H., 1982. “On Dynamic Investment Strategies,”
Proceedings of the seminar on the Analysis of Security Prices, U. of
Chicago. (published in 2000 in JEDC).
Dybvig, P., 1988a. “Distributional Analysis of Portfolio Choice,”
Journal of Business.

Dybvig, P., 1988b. “Inefficient Dynamic Portfolio Strategies or How

to Throw Away a Million Dollars in the Stock Market,” RFS.

▶ Suboptimality of path-dependent contracts in Black Scholes
model
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Some Assumptions

∙ Consider an arbitrage-free and complete market.

∙ Given a strategy with payoff XT at time T . There exists Q,
such that its price at 0 is

PX = EQ [e−rTXT ]

∙ P (“physical measure”) and Q (“risk-neutral measure”) are
two equivalent probability measures:

�T = e−rT
(

dQ

dP

)
T

, PX = EQ [e−rTXT ] = EP [�TXT ].
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Motivation: Traditional Approach to Portfolio Selection

Investors have a strategy that will give them a final wealth XT .
This strategy depends on the financial market and is random.

� For example they want to maximize the expected utility of
their final wealth XT

max
XT

(EP [U(XT )])

U: utility (increasing because individuals prefer more to less).

� for a given cost of the strategy

cost at 0 = EQ [e−rTXT ] = EP [�TXT ]

Find optimal payoff XT ⇒ Optimal cdf F of XT
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Cost-efficient strategies

� Given the cdf F that the investor would like for his final wealth

� We derive an explicit representation of the payoff XT such
that

▶ XT ∼ F in the real world

▶ XT corresponds to the cheapest strategy (=cost-efficient
strategy)

▶ What is cost-efficiency?

▶ Explicit construction of cost-efficient strategies.
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A Simple Illustration

Let’s illustrate what the “efficiency cost” is with a simple example.
Consider :

� A market with 2 assets: a bond and a stock S .

� A discrete 2-period binomial model for the stock S .

� A strategy with payoff XT at the end of the two periods.

� An expected utility maximizer with utility function U.
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A simple illustration for X2, a payoff at T = 2
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Y2, a payoff at T = 2 distributed as X2
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Efficiency Cost

∙ Given a strategy with payoff XT at time T , and initial price at
time 0

PX = EP [�TXT ]

∙ F : XT ’s distribution under the physical measure P.

The distributional price is defined as

PD(F ) = min
{YT ∣ YT∼F}

{EP [�TYT ]} = min
{YT ∣ YT∼F}

c(YT )

The “loss of efficiency” or “efficiency cost” is equal to:

PX − PD(F )

Criteria for evaluating payoffs independent of the agents’
preferences.
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Minimum Price = Cost-efficiency

Theorem

Consider the following optimization problem:

min
{Z ∣ Z∼F}

{c(Z )}

Assume �T is continuously distributed, then the optimal strategy is

X★T = F−1 (1− F� (�T )) .

Note that X★T ∼ F and X★T is a.s. unique such that

PD(F ) = c(X★T )

Thanks to the uniqueness, we characterize all cost-efficient
strategies.
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Black and Scholes Model

Under the physical measure P,

dSt

St
= �dt + �dW P

t

Under the risk neutral measure Q,

dSt

St
= rdt + �dW Q

t

�T = e−rT
(
dQ
dP

)
T

= e−rTa
(
ST
S0

)−b
where a and b are positive

and constant.
Any path-dependent financial derivative is inefficient.
To be cost-efficient, the contract has to be a European
derivative written on ST and non-decreasing w.r.t. ST (when
� ⩾ r). In this case,

X★ = F−1 (FS (ST ))
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Geometric Asian contract in Black and Scholes model

Assume a strike K . The payoff of the Geometric Asian call is given
by

GT =
(

e
1
T

∫ T
0 ln(St)dt − K

)+

which corresponds in the discrete case to

((∏n
k=1 S kT

n

) 1
n − K

)+

.

The efficient payoff that is distributed as the payoff GT is given by

G★T = d

(
S

1/
√

3
T − K

d

)+

where d := S
1− 1√

3

0 e

(
1
2
−
√

1
3

)(
�−�2

2

)
T

.
This payoff G★T is a power call option. If � = 20%, � = 9%,
r = 5%, S0 = 100. The price of this geometric Asian option is
5.94. The payoff G★T costs only 5.77.
Similar result in the discrete case.
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Example: the discrete Geometric option
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With � = 20%, � = 9%, r = 5%, S0 = 100, T = 1 year, K = 100, n = 12.

Price of the geometric Asian option = 5.94. The distributional price is 5.77.

The least-efficient payoff Z★T costs 9.03.
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Put option in Black and Scholes model

Assume a strike K . The payoff of the put is given by

LT = (K − ST )+ .

The payoff that has the lowest cost and is distributed such as the
put option is given by

Y ★T = F−1
L (1− F� (�T )) .
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Put option in Black and Scholes model

Assume a strike K . The payoff of the put is given by

LT = (K − ST )+ .

The cost-efficient payoff that will give the same distribution as a
put option is

Y ★T =

⎛⎝K − S2
0 e

2
(
�−�2

2

)
T

ST

⎞⎠+

.

This type of power option “dominates” the put option.
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Cost-efficient payoff of a put

0 100 200 300 400 500
0

20

40

60

80

100

S
T

P
ay

o
ff

cost efficient payoff that gives same payoff distrib as the put option

Y* Best one

Put option

With � = 20%, � = 9%, r = 5%, S0 = 100, T = 1 year, K = 100.
Distributional price of the put = 3.14

Price of the put = 5.57
Efficiency loss for the put = 5.57-3.14= 2.43
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Utility Independent Criteria

Denote by

� XT the final wealth of the investor,

� V (XT ) the objective function of the agent,

Assumptions

1 Agents’ preferences depend only on the probability
distribution of terminal wealth: “law-invariant” preferences.
(if XT ∼ ZT then: V (XT ) = V (ZT ).)

2 Agents prefer “more to less”: if c is a non-negative
random variable V (XT + c) ⩾ V (XT ).

3 The market is perfectly liquid, no taxes, no transaction costs,
no trading constraints (in particular short-selling is allowed).

4 The market is arbitrage-free and complete.

Any optimal investment has to be cost-efficient.
Carole Bernard Explicit Representation of Cost-efficient Strategies 21



Introduction Cost-Efficiency Examples Preferences Conclusions

Explaining the Demand for Inefficient Payoffs

1 State-dependent needs
� Background risk:

� Hedging a long position in the market index ST (background
risk) by purchasing a put option PT ,

� the background risk can be path-dependent.

� Stochastic benchmark or other constraints: If the investor
wants to outperform a given (stochastic) benchmark Γ such
that:

P {! ∈ Ω /WT (!) > Γ(!)} ⩾ �.

� Intermediary consumption.

2 Other sources of uncertainty: Stochastic interest rates or
stochastic volatility

3 Transaction costs, frictions
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Conclusions

� A preference-free framework for ranking different investment
strategies.

� For a given investment strategy, we derive an explicit
analytical expression

1 for the cheapest strategy that has the same payoff distribution.
2 for the most expensive strategy that has the same payoff

distribution.

� There are strong connections between this approach and
stochastic dominance rankings. This may be useful for
improving the design of financial products.

� Many extensions: With Steven Vanduffel (Brussels),
� Generalization in a multidimensional market (also with

Mateusz Maj (Brussels)).
� Derivation of upper and lower bounds for indifference prices of

insurance claims.
� Extensions with state-dependent constraints.
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Proof of Main Result

Assume that �T is continuously distributed.
Consider a strategy with payoff XT distributed as F . We define
F−1 as follows:

F−1(y) = min {x / F (x) ≥ y} .

The cost of the strategy with payoff XT is

c(XT ) = E [�TXT ].

Then,

E [�TF−1
X (1− F�(�T ))] ⩽ c(XT ) ⩽ E [�TF−1

X (F�(�T ))]

It comes from the following property. Let Z = F−1
Z (U), then

E [F−1
Z (U) F−1

X (1− U)] ⩽ E [F−1
Z (U) X ] ⩽ E [F−1

Z (U) F−1
X (U)]

⇒ Bounds for financial claims.
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